Skip to main content

Mechanically Self-Locked Molecules

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Macrocycles, as a class of cyclic molecules, have been broadly researched by supramolecular chemists due to their efficient dynamic binding behaviors with suitable guest molecules. When the macrocycle and its corresponding guest were covalently tied up, an ingenious topological architecture named as “mechanically self-locked molecule” formed. Mechanically self-locked molecules using noncovalent interaction as driving force were designed and engineered at molecular resolution, providing a possibility to realize the motion of molecular machine in one molecule. On the basis of the number and position of the covalent connected sites between the macrocycle and the guest molecule, we will summarize the mechanically self-locked architectures according to the following categories: pseudo[1]rotaxanes, pseudo[1]catenanes, molecular figures-of-eight, pretzelanes, and double-lasso molecules. We wish this chapter focusing on the progress of these unique structures could expand the horizon for people who are interested in or working on the mechanically self-locked architectures or molecular machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Corey EJ, Cheng XM (1989) The logic of chemical synthesis. Wiley, New York

    Google Scholar 

  2. Nicolaou KC, Vourloumis D, Winssinger N, Baran PS (2000) The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 39:44–122

    Article  CAS  Google Scholar 

  3. Eaton PE, Cole TW (1964) Cubane. J Am Chem Soc 86:3157–3158

    Article  CAS  Google Scholar 

  4. Wasserman E (1960) The preparation of interlocking rings: a catenane1. J Am Chem Soc 82:4433–4434

    Article  CAS  Google Scholar 

  5. Frisch HL, Wasserman E (1961) Chemical topology1. J Am Chem Soc 83:3789–3795

    Article  CAS  Google Scholar 

  6. Dietrich-Buchecker CO, Sauvage JP, Kintzinger JP (1983) Une nouvelle famille de molecules: Les metallo-catenanes. Tetrahedron Lett 24:5095–5098

    Article  CAS  Google Scholar 

  7. Hubin TJ, Busch DH (2000) Template routes to interlocked molecular structures and orderly molecular entanglements. Coord Chem Rev 200–202:5–52

    Article  Google Scholar 

  8. Reuter C, Mohry A, Sobanski A, Vögtle F (2000) [1]rotaxanes and pretzelanes: synthesis, chirality, and absolute configuration. Chem Eur J 6:1674–1682

    Article  CAS  PubMed  Google Scholar 

  9. Ashton PR, Ballardini R, Balzani V, Boyd SE, Credi A, Gandolfi MT, Gómez-López M, Iqbal S, Philp D, Preece JA, Prodi L, Ricketts HG, Stoddart JF, Tolley MS, Venturi M, Venturi M, White AJP, Williams DJ (1997) Simple mechanical molecular and supramolecular machines: photochemical and electrochemical control of switching processes. Chem Eur J 3:152–170

    Article  CAS  Google Scholar 

  10. Ashton PR, Gómez-López M, Iqbal S, Preece JA, Stoddart JF (1997) A self-complexing macrocycle acting as a chromophoric receptor. Tetrahedron Lett 38:3635–3638

    Article  CAS  Google Scholar 

  11. Liu Y, Flood AH, Moskowitz RM, Stoddart JF (2005) Versatile self-complexing compounds based on covalently linked donor–acceptor cyclophanes. Chem Eur J 11:369–385

    Article  CAS  Google Scholar 

  12. Wang Y, Sun J, Liu Z, Nassar MS, Botros YY, Stoddart JF (2017) Radically promoted formation of a molecular lasso. Chem Sci 8:2562–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brøndsted Nielsen M, Becher J (1998) ‘Self-complexing’ tetrathiafulvalene macrocycles; a tetrathiafulvalene switch. Chem Commun 475–476

    Google Scholar 

  14. Brøndsted Nielsen M, Hansen JG, Becher J (1999) Self-complexing tetrathiafulvalene-based donor–acceptor macrocycles. Eur J Org Chem 1999:2807–2815

    Article  Google Scholar 

  15. Cooke G, Woisel P, Bria M, Delattre F, Garety JF, Hewage SG, Rabani G, Rosair GM (2006) A tuneable self-complexing molecular switch. Org Lett 8:1423–1426

    Article  CAS  PubMed  Google Scholar 

  16. Hooley RJ, Rebek (2007) Self-complexed deep cavitands: alkyl chains coil into a nearby cavity. Org Lett 9:1179–1182

    Article  CAS  PubMed  Google Scholar 

  17. Du X-S, Wang C-Y, Jia Q, Deng R, Tian H-S, Zhang H-Y, Meguellati K, Yang Y-W (2017) Pillar[5]arene-based [1]rotaxane: high-yield synthesis, characterization and application in knoevenagel reaction. Chem Commun 53:5326–5329

    Article  CAS  Google Scholar 

  18. Balzani V, Ceroni P, Credi A, Gómez-López M, Hamers C, Fraser Stoddart J, Wolf R (2001) Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system. New J Chem 25:25–31

    Article  CAS  Google Scholar 

  19. Hiratani K, Kaneyama M, Nagawa Y, Koyama E, Kanesato M (2004) Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. J Am Chem Soc 126:13568–13569

    Article  CAS  PubMed  Google Scholar 

  20. Qu D-H, Feringa BL (2010) Controlling molecular rotary motion with a self-complexing lock. Angew Chem 122:1125–1128

    Article  Google Scholar 

  21. Li H, Zhang H, Zhang Q, Zhang Q-W, Qu D-H (2012) A switchable ferrocene-based [1]rotaxane with an electrochemical signal output. Org Lett 14:5900–5903

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Zhang J-N, Zhou W, Zhang H, Zhang Q, Qu D-H, Tian H (2013) Dual-mode operation of a bistable [1]rotaxane with a fluorescence signal. Org Lett 15:3070–3073

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Li X, Ågren H, Qu D-H (2014) Two switchable star-shaped [1](n)rotaxanes with different multibranched cores. Org Lett 16:4940–4943

    Article  CAS  PubMed  Google Scholar 

  24. Waelès P, Clavel C, Fournel-Marotte K, Coutrot F (2015) Synthesis of triazolium-based mono- and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8. Chem Sci 6:4828–4836

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xue Z, Mayer MF (2010) Actuator prototype: capture and release of a self-entangled [1]rotaxane. J Am Chem Soc 132:3274–3276

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa T, Usuki N, Nakazono K, Koyama Y, Takata T (2015) Linear–cyclic polymer structural transformation and its reversible control using a rational rotaxane strategy. Chem Commun 51:5606–5609

    Article  CAS  Google Scholar 

  27. Onagi H, Blake CJ, Easton CJ, Lincoln SF (2003) Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane. Chem Eur J 9:5978–5988

    Article  CAS  PubMed  Google Scholar 

  28. Ma X, Wang Q, Tian H (2007) Disparate orientation of [1]rotaxanes. Tetrahedron Lett 48:7112–7116

    Article  CAS  Google Scholar 

  29. Ma X, Qu D, Ji F, Wang Q, Zhu L, Xu Y, Tian H (2007) A light-driven [1]rotaxane via self-complementary and suzuki-coupling capping. Chem Commun 1409–1411

    Google Scholar 

  30. Di Motta S, Avellini T, Silvi S, Venturi M, Ma X, Tian H, Credi A, Negri F (2013) Photophysical properties and conformational effects on the circular dichroism of an azobenzene–cyclodextrin [1]rotaxane and its molecular components. Chem Eur J 19:3131–3138

    Article  PubMed  Google Scholar 

  31. Cao J, Ma X, Min M, Cao T, Wu S, Tian H (2014) Inhibit logic operations based on light-driven β-cyclodextrin pseudo[1]rotaxane with room temperature phosphorescence addresses. Chem Commun 50:3224–3226

    Article  CAS  Google Scholar 

  32. Franchi P, Fanì M, Mezzina E, Lucarini M (2008) Increasing the persistency of stable free-radicals: synthesis and characterization of a nitroxide based [1]rotaxane. Org Lett 10:1901–1904

    Article  CAS  PubMed  Google Scholar 

  33. Miyawaki A, Kuad P, Takashima Y, Yamaguchi H, Harada A (2008) Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. J Am Chem Soc 130:17062–17069

    Article  CAS  PubMed  Google Scholar 

  34. Yamauchi K, Miyawaki A, Takashima Y, Yamaguchi H, Harada A (2010) Switching from altro-α-cyclodextrin dimer to pseudo[1]rotaxane dimer through tumbling. Org Lett 12:1284–1286

    Article  CAS  PubMed  Google Scholar 

  35. Legros V, Vanhaverbeke C, Souard F, Len C, Désiré J (2013) Β-cyclodextrin–glycerol dimers: synthesis and NMR conformational analysis. Eur J Org Chem 2013:2583–2590

    Article  CAS  Google Scholar 

  36. Gao C, Ma X, Zhang Q, Wang Q, Qu D, Tian H (2011) A light-powered stretch–contraction supramolecular system based on cobalt coordinated [1]rotaxane. Org Biomol Chem 9:1126–1132

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Chipot C, Shao X, Cai W (2014) Threading or tumbling? Insight into the self-inclusion mechanism of an altro-α-cyclodextrin derivative. J Phys Chem C 118:19380–19386

    Article  CAS  Google Scholar 

  38. Wolf R, Asakawa M, Ashton PR, Gómez-López M, Hamers C, Menzer S, Parsons IW, Spencer N, Stoddart JF, Tolley MS, Williams DJ (1998) A molecular chameleon: chromophoric sensing by a self-complexing molecular assembly. Angew Chem Int Ed 37:975–979

    Article  CAS  Google Scholar 

  39. Ogoshi T, Akutsu T, Yamafuji D, Aoki T, Yamagishi T-a (2013) Solvent- and achiral-guest-triggered chiral inversion in a planar chiral pseudo[1]catenane. Angew Chem 125:8269–8273

    Article  Google Scholar 

  40. Yao J, Wu W, Liang W, Feng Y, Zhou D, Chruma JJ, Fukuhara G, Mori T, Inoue Y, Yang C (2017) Temperature-driven planar chirality switching of a pillar[5]arene-based molecular universal joint. Angew Chem Int Ed 56:6869–6873

    Article  CAS  Google Scholar 

  41. Lee E, Ju H, Park I-H, Jung JH, Ikeda M, Kuwahara S, Habata Y, Lee SS (2018) Pseudo[1]catenane-type pillar[5]thiacrown whose planar chiral inversion is triggered by metal cation and controlled by anion. J Am Chem Soc 140:9669–9677

    Article  CAS  PubMed  Google Scholar 

  42. Li S-H, Zhang H-Y, Xu X, Liu Y (2015) Mechanically selflocked chiral gemini-catenanes. Nat Commun 6:7590–7596

    Article  PubMed  PubMed Central  Google Scholar 

  43. Reuter C, Wienand W, Schmuck C, Vögtle F (2001) A self-threaded “molecular 8”. Chem Eur J 7:1728–1733

    Article  CAS  PubMed  Google Scholar 

  44. Boyle MM, Forgan RS, Friedman DC, Gassensmith JJ, Smaldone RA, Stoddart JF, Sauvage J-P (2011) Donor–acceptor molecular figures-of-eight. Chem Commun 47:11870–11872

    Article  CAS  Google Scholar 

  45. Boyle MM, Gassensmith JJ, Whalley AC, Forgan RS, Smaldone RA, Hartlieb KJ, Blackburn AK, Sauvage J-P, Stoddart JF (2012) Stereochemistry of molecular figures-of-eight. Chem Eur J 18:10312–10323

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Vignon SA, Zhang X, Bonvallet PA, Khan SI, Houk KN, Stoddart JF (2005) Dynamic chirality in donor−acceptor pretzelanes. J Org Chem 70:9334–9344

    Article  CAS  PubMed  Google Scholar 

  47. Zhao Y-L, Trabolsi A, Stoddart JF (2009) A bistable pretzelane. Chem Commun 4844–4846

    Google Scholar 

  48. Han M, Zhang H-Y, Yang L-X, Ding Z-J, Zhuang R-J, Liu Y (2011) A [2]catenane and pretzelane based on sn–porphyrin and crown ether. Eur J Org Chem 2011:7271–7277

    Article  CAS  Google Scholar 

  49. Romuald C, Ardá A, Clavel C, Jiménez-Barbero J, Coutrot F (2012) Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain. Chem Sci 3:1851–1857

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, SH., Chen, Y., Liu, Y. (2019). Mechanically Self-Locked Molecules. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics