Skip to main content

Micro-/Nano-texturing by Ultrasonic-Assisted Grinding

  • Reference work entry
  • First Online:
Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT))

  • 2125 Accesses

Abstract

In this chapter, a novel ultrasonic-assisted micro-/nano-texturing method was proposed and developed. A new 3D ultrasonic vibration spindle was developed for carrying out the proposed processes. The texturing mechanisms were analyzed by mathematically calculating the cutting loci and establishing the surface generation modeling processes. Finally, the tool design principles were proposed and experimentally verified. The experimental results and theoretical analysis proved that the proposed method can rapidly and precisely fabricate tailored surface textures at micrometer and nanometer scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228

    Article  Google Scholar 

  • Boothroyd G, Knight WA (2006) Fundamentals of machining and machine tools. Taylor and Francis, UK

    Google Scholar 

  • Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Article  Google Scholar 

  • Brinksmeier E, Gläbe R, SchÓ§nemann L (2012) Review on diamond-machining processes for the generation of functional surface structures. CIRP J Manuf Sci Technol 5(1):1–7

    Article  Google Scholar 

  • Cheng J, Liu C, Shang S, Liu D, Perrie W (2013) A review of ultrafast laser materials micromachining. Opt Laser Technol 46:88–102

    Article  Google Scholar 

  • Denkena B, Kästner J, Wang B (2010) Advanced microstructures and its production through cutting and grinding. CIRP Ann Manuf Technol 59(1):67–72

    Article  Google Scholar 

  • Dubey AK, Yadava V (2008) Laser beam machining – a review. Int J Mach Tools Manuf 48(6):609–628

    Article  Google Scholar 

  • Ehmann KF, Hong MS (1994) A generalized model of the surface generation process in metal cutting. CIRP Ann Manuf Technol 43(1):483–486

    Article  Google Scholar 

  • Hansen HN, Hocken RJ, Tosello G (2011) Replication of micro and nano surface geometries. CIRP Ann Manuf Technol 60(2):695–714

    Article  Google Scholar 

  • Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300

    Article  Google Scholar 

  • Kim DS, Chang IC, Kim SW (2002) Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces. Precis Eng 26(2):168–174

    Article  Google Scholar 

  • Kurosawa M, Kodaira O, Tsuchitoi Y, Higuchi T (1998) Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators. IEEE Trans Ultrason Ferroelectr Freq Control 45(5):1188–1195

    Article  Google Scholar 

  • Lee WB, Cheung CF (2001) A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining. Int J Mech Sci 43(4):961–991

    Article  Google Scholar 

  • Lin SC, Chang MF (1998) A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning. Int J Mach Tools Manuf 38(7):763–782

    Article  Google Scholar 

  • Liu X, Du D, Mourou G (1997) Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quantum Electron 33(10):1706–1716

    Article  Google Scholar 

  • Lyshevski SE (2002) MEMS and NEMS: systems, devices, and structures. Taylor & Francis, UK

    Google Scholar 

  • Masuzawa T (2000) State of the art of micromachining. CIRP Ann Manuf Technol 49(2):473–488

    Article  Google Scholar 

  • Moriwaki T, Shamoto E (1995) Ultrasonic elliptical vibration cutting. CIRP Ann Manuf Technol 44(1):31–34

    Article  Google Scholar 

  • Rozzi JC, Pfefferkorn FE, Incropera FP, Shin YC (2000a) Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: I. Comparison of predictions with measured surface temperature histories. Int J Heat Mass Transf 43(3):1409–1424

    Article  Google Scholar 

  • Rozzi JC, Pfefferkorn FE, Shin YC (2000b) Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: II. Assessment of parametric effects. Int J Heat Mass Transf 43(8):1425–1437

    Article  Google Scholar 

  • Shamoto E, Moriwaki T (1994) Study on elliptical vibration cutting. CIRP Ann Manuf Technol 43(1):35–38

    Article  Google Scholar 

  • Shimada K (2012) Study on vibration grinding. Doctoral thesis

    Google Scholar 

  • Shimada S, Tanaka H, Higuchi M, Yamaguchi T, Honda S, Obata K (2004) Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals. CIRP Ann Manuf Technol 53(1):57–60

    Article  Google Scholar 

  • Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6(1):11–16

    Article  Google Scholar 

  • Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE (1997) Supramolecular materials: self-organized nanostructures. Science 276(5311):384–389

    Article  Google Scholar 

  • Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255

    Article  Google Scholar 

  • Xing D, Zhang J, Shen X, Zhao Y, Wang T (2013) Tribological properties of ultrasonic vibration assisted milling aluminium alloy surfaces. Procedia CIRP 6:539–544

    Article  Google Scholar 

  • Xu S, Nishikawa C, Shimada K, Mizutani M, Kuriyagawa T (2013) Surface textures fabrication on zirconia ceramics by 3D ultrasonic vibration assisted slant feed grinding. Adv Mater Res 797:326–331

    Article  Google Scholar 

  • Xu S, Shimada K, Mizutani M, Kuriyagawa T (2014) Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool. Int J Mach Tools Manuf 86:12–17

    Article  Google Scholar 

  • Xu S, Shimada K, Mizutani M, Kuriyagawa T (2016) Analysis of machinable structures and their wettability of rotary ultrasonic texturing method. Chinese J Mechanical Eng 29 (6):1187–1192

    Article  Google Scholar 

  • Xu S, Shimada K, Mizutani M, Kuriyagawa T (2017) Development of a novel 2D rotary ultrasonic texturing technique for fabricating tailored structures. Int J Adv Manuf Tech 89 (1–4):1161–1172

    Article  Google Scholar 

  • Xu S, Shimada K, Mizutani M, Kuriyagawa T (2017) Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces. Front Mech Eng 12(1):33–45

    Article  Google Scholar 

  • Yan J, Oowada T, Zhou T, Kuriyagawa T (2009) Precision machining of microstructures on electroless-plated NiP surface for molding glass components. J Mater Process Technol 209(10):4802–4808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Mizutani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mizutani, M., Xu, S., Shimada, K., Kuriyagawa, T. (2018). Micro-/Nano-texturing by Ultrasonic-Assisted Grinding. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0098-1_8

Download citation

Publish with us

Policies and ethics