Skip to main content

Catalytic AFM-Based Nanofabrication

  • Reference work entry
  • First Online:
Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT))

  • 2103 Accesses

Abstract

Atomic force microscopy (AFM)-based nanolithography and nanostructure fabrication have attracted much attention in recent years in nanoscience and nanotechnology. The AFM-based technique has unique abilities such as precise positioning on the patterned surface to be modified, surface measurements (such as topography, friction force, and phase imaging) after the fabrication process, and localized surface characterization (mechanical, electrical, magnetic, and thermal properties) at the nanometer scale. The approaches developed to date can be divided into subtractive processes (such as direct mechanical modification and thermomechanical writing) and additive ones (such as local anodic oxidation and dip pen nanolithography). Employing a catalytically active AFM probe, a novel nanofabrication strategy has also been used to carry out highly localized catalytic chemical reactions to enable the direct and resistless nanoscale patterning and structuring of various organic/inorganic materials. This chapter focuses on the principles and methods of catalytic AFM-based nanofabrication, challenges in its developments, and the possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Blackledge C, Engebretson DA, McDonald JD (2000) Nanoscale site-selective catalysis of surface assemblies by palladium-coated atomic force microscopy tips: chemical lithography without electrical current. Langmuir 16(22):8317–8323

    Article  Google Scholar 

  • Brown KA, Eichelsdoerfer DJ, Liao X, He S, Mirkin CA (2014) Material transport in dip-pen nanolithography. Front Phys 9(3):385–397

    Article  Google Scholar 

  • Carnally SAM, Wong LS (2014) Harnessing catalysis to enhance scanning probe nanolithography. Nanoscale 6(10):4998–5007

    Article  Google Scholar 

  • Davis JJ, Bagshaw CB, Busuttil KL, Hanyu Y, Coleman KS (2006) Spatially controlled Suzuki and Heck catalytic molecular coupling. J Am Chem Soc 128(43):14135–14141

    Article  Google Scholar 

  • Garcia R, Knoll AW, Riedo E (2014) Advanced scanning probe lithography. Nat Nanotechnol 9(8):577–587

    Article  Google Scholar 

  • Han H, Huang Z, Lee W (2014) Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9(3):271–304

    Article  Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12):8269–8285

    Article  Google Scholar 

  • Hyon CK, Choi SC, Hwan SW, Ahn D, Kim Y, Kim EK (1999) Direct nanometer-scale patterning by the cantilever oscillation of an atomic force microscope. Appl Phys Lett 75(2):292–294

    Article  Google Scholar 

  • Kawase T, Mura A, Dei K, Nishitani K, Kawai K, Uchikoshi J, Morita J, Arima K (2013) Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning. Nanoscale Res Lett 8(1):151

    Article  Google Scholar 

  • King WP, Bhatia B, Felts JR, Kim HJ, Kwon B, Lee B, Somnath S, Rosenberger M (2013) Heated atomic force microscope cantilevers and their applications. Annu Rev Heat Transf 16:287–326

    Article  Google Scholar 

  • Luo X, Pedrosa VA, Wang J (2009) Enzymatic nanolithography of polyaniline nanopatterns by using peroxidase-modified atomic force microscopy tips. Chem Eur J 15(21):5191–5194

    Article  Google Scholar 

  • Miyake S, Wang M, Kim J (2014) Silicon nanofabrication by atomic force microscopy-based mechanical processing. J Nanotechnol 2014:102404

    Google Scholar 

  • Müller WT, Klein DL, Lee T, Clarke J, McEuen PL, Schultz PG (1995) A strategy for the chemical synthesis of nanostructures. Science 268(5208):272–273

    Article  Google Scholar 

  • Nakamura C, Miyamoto C, Obataya Takeda S, Yabuta M, Miyake J (2007) Enzymatic nanolithography of FRET peptide layer using V8 protease-immobilized AFM probe. Biosens Bioelectron 22(9–10):2308–2314

    Article  Google Scholar 

  • Ogino T, Nishimura S, Shirakashi J (2008) Scratch nanolithography on Si surface using scanning probe microscopy: influence of scanning parameters on groove size. Jpn J Appl Phys 47(1):712–714

    Article  Google Scholar 

  • Paxton WF, Spruell JM, Stoddart JF (2009) Heterogeneous catalysis of a copper-coated atomic force microscopy tip for direct-write click chemistry. J Am Chem Soc 131(19):6692–6694

    Article  Google Scholar 

  • Péter M, Li X-M, Huskens J, Reinhoudt DN (2004) Catalytic probe lithography: catalyst-functionalized scanning probes as nanopens for nanofabrication on self-assembled monolayers. J Am Chem Soc 126(37):11684–11690

    Article  Google Scholar 

  • Riemenschneider L, Blank S, Radmacher M (2005) Enzyme-assisted nanolithography. Nano Lett 5(9):1643–1646

    Article  Google Scholar 

  • Ryu YK, Garcia R (2017) Advanced oxidation scanning probe lithography. Nanotechnology 28(14):142003

    Article  Google Scholar 

  • Shibata T, Iio N, Furukawa H, Nagai M (2017a) Nanofabrication technique based on localized photocatalytic reactions using a TiO2-coated atomic force microscopy probe. Appl Phys Lett 110(6):063701

    Article  Google Scholar 

  • Shibata T, Yamamoto K, Sasano J, Nagai M (2017b) Electrochemically assisted localized etching of ZnO single crystals in water using a catalytically active Pt-coated atomic force microscopy probe. AIP Adv 7(9):095012

    Article  Google Scholar 

  • Takeda S, Nakamura C, Miyamoto C, Nakamura N, Kageshima M, Tokumoto H, Miyake J (2003) Lithographing of biomolecules on a substrate surface using an enzyme-immobilized AFM tip. Nano Lett 3(11):1471–1474

    Article  Google Scholar 

  • Tang J, Zheng J-J, Yu Y-T, Chen L, Zhang N, Tian Z (2012) Selective etching of ZnO films on an ITO substrate using a scanning electrochemical microscope. Electrochim Acta 83:247–252

    Article  Google Scholar 

  • Tseng AA (ed) (2008) Nanofabrication: fundamentals and applications. World Scientific, Singapore

    Google Scholar 

  • Tseng AA (2011) Removing material using atomic force microscopy with single- and multiple-tip sources. Small 7(24):3409–3427

    Article  Google Scholar 

  • Ul-Haq E, Patole S, Moxey M, Amstad E, Vasilev C, Hunter CN, Leggett GJ, Spencer ND, Williams NH (2013) Photocatalytic nanolithography of self-assembled monolayers and proteins. ACS Nano 7(9):7610–7618

    Article  Google Scholar 

  • Valyaev DA, Clair S, Patrone L, Abel M, Porte L, Chuzel O, Parrain J-L (2013) Grafting a homogeneous transition metal catalyst onto a silicon AFM probe: a promising strategy for chemically constructive nanolithography. Chem Sci 4(7):2815–2821

    Article  Google Scholar 

  • Yamamoto K, Sato K, Sasano J, Nagai M, Shibata T (2017) Localized etching of silicon in water using a catalytically active platinum-coated atomic force microscopy probe. Precis Eng 50:344–353

    Article  Google Scholar 

  • Zorbas V, Kanungo M, Bains SA, Mao Y, Hemraj-Benny T, Misewich JA, Wong SS (2005) Current-less photoreactivity catalyzed by functionalized AFM tips. Chem Commun 36:4598–4600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shibata, T., Sasano, J., Nagai, M. (2018). Catalytic AFM-Based Nanofabrication. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0098-1_27

Download citation

Publish with us

Policies and ethics