Skip to main content

Precision Molding of Microstructures on Chalcogenide Glass for Infrared Optics

  • Reference work entry
  • First Online:
Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT))

  • 2109 Accesses

Abstract

Chalcogenide glass (ChG), as an alternative mgeraterial in place of single-crystal germanium, is increasingly used in thermal imaging, night vision, and infrared guidance systems, etc., and microstructure array on the infrared component is widely used in micro-optical systems owing to their excellent formability through precision glass molding (PGM), which can achieve low cost and high efficiency compared with other microstructural manufacturing technologies. To describe the thermomechanical properties of ChG, the viscoelastic constitutive of ChG is modeled and used in finite element simulation to study the influence of process parameters on the forming stress. The processing parameters are studied to reduce the occurrence of microdimples and optimize the molding conditions. Finally, microstructure arrays are molded using spherical ChG preform and the optimal molding materials are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bureau B, Zhang X, Smektala F et al (2004) Recent advances in chalcogenide glasses. J Non Cryst Solids 345-346(20):276–283

    Article  Google Scholar 

  • Cha D, Kim H, Park H et al (2010) Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications. Appl Optics 49:1607–1613

    Article  Google Scholar 

  • Chiu C, Lee Y (2011) Fabricating of aspheric micro-lens array by excimer laser micromachining. Opt Lasers Eng 49(9–10):1232–1237

    Article  Google Scholar 

  • Cottrell T (1958) The strengths of chemical bonds. Butterworths Scientific Publications, London

    Google Scholar 

  • Davies M, Evans C, Bergner B (2002) Application of precision diamond machining to the manufacture of microphotonics components. Proc SPIE Int Soc Opt Eng 5183(2):94–108

    Google Scholar 

  • Eisenberg N, Klebanov M, Lyubin V et al (2000) Infrared microlens arrays based on chalcogenide photoresist, fabricated by thermal reflow process. J Optoelectron Adv Mater 2(2):147–152

    Google Scholar 

  • Gai X, Han T, Prasad A et al (2010) Progress in optical waveguides fabricated from chalcogenide glasses. Opt Express 18(25):26635–26646

    Article  Google Scholar 

  • Gupta C (2006) Chemical metallurgy: principles and practice. Wiley, Hoboken

    Google Scholar 

  • Hilton A (2010) Chalcogenide glasses for infrared optics. McGraw-Hill Companies, Inc, New York

    Google Scholar 

  • Hisakuni H, Tanaka K (1995) Optical fabrication of microlenses in chalcogenide glasses. Opt Lett 20(9):958

    Article  Google Scholar 

  • Kelley J, Leventhal J (2017) Newtonian physics problems in classical and quantum mechanics. Springer International Publishing, Berlin

    Google Scholar 

  • Liu W, Shen P, Jin N (2012) Viscoelastic properties of chalcogenide glasses and the simulation of their molding processes. Infrared Laser Eng 19(3):422–425

    Google Scholar 

  • Lu Y, Song B, Xu T et al (2013) Design of refractive-diffractive night vision system based on chalcogenide glass. Laser Optoelectron Progress 50(12):168–174

    Google Scholar 

  • Luo S, Huang F, Zhan D, et al (2010) Development of chalcogenide glasses for infrared thermal imaging system. Laser & Infrared 40(1):9–13

    Google Scholar 

  • Manevich M, Klebanov M, Lyubin V et al (2008) Gap micro-lithography for chalcogenide micro-lens array fabrication. Chalcogenide Lett 5(4):61–64

    Google Scholar 

  • Monfared A, Liu W, Zhang L (2017) On the adhesion between metallic glass and dies during thermoplastic forming. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2017.04.005

  • Naessens K, Ottevaere H, Daele P et al (2003) Flexible fabrication of microlenses in polymer layers with excimer laser ablation. Appl Surf Sci 208(1):159–164

    Article  Google Scholar 

  • Pipkin A (1972) Lectures on viscoelasticity theory. Springer, Berlin

    Book  Google Scholar 

  • Rieser D, Spieß G, Manns P (2008) Investigations on glass-to-mold sticking in the hot forming process. J Non Cryst Solids 354(12–13):1393–1397

    Article  Google Scholar 

  • Saiz E, Cannon R, Tomsia A (2008) High-temperature wetting and the work of adhesion in metal/oxide systems. Annu Rev Mat Res 38(38):197–226

    Article  Google Scholar 

  • Silberberg M (2000) Chemistry: the molecular nature of matter and change. McGraw-Hill Companies, Inc, New York

    Google Scholar 

  • Suryanarayana C, Bulk IA (2013) metallic glasses. Phys Today 66(2):32–37

    Article  Google Scholar 

  • Tang B, Yang Y, Fan Y et al (2010) Barium gallogermanate glass ceramics for infrared applications. J Mater Sci Technol 26(6):558–563

    Article  Google Scholar 

  • Wang J, Fan J, Zhang Y et al (2014) Diffusion bonding of a Zr-based metallic glass in its supercooled liquid region. Intermetallics 46(1):236–242

    Article  Google Scholar 

  • Xie Q, Yi L, Pan S (2012) The development and application of the materials for infrared windows and domes. Infrared Technol 10:559–567

    Google Scholar 

  • Xue J, Man X, Gong Y et al (2003) Preparation, characteristic and application of chalcogenide glasses. Optoelectronic Technology & Information 16(4):28–31

    Google Scholar 

  • Yu H (2007) Infrared optical materials. National Defense Industry Press, Beijing. (in Chinese)

    Google Scholar 

  • Zhang X, Ma H, Lucas J (2003a) Applications of chalcogenide glass bulks and fibres. J Optoelectron Adv Mater 5(5):1327–1333

    Google Scholar 

  • Zhang X, Guimond Y, Bellec Y (2003b) Production of complex chalcogenide glass optics by molding for thermal imaging. J Non Cryst Solids 327(4):519–523

    Article  Google Scholar 

  • Zhang L, Chen L, Fan Y et al (2011) Development of mid-infrared transmitting glasses window and applications. Acta Opt Sin 31(9):0900134

    Article  Google Scholar 

  • Zhou T, Yan J, Masuda J et al (2009) Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process. J Mater Process Technol 209(9):4484–4489

    Article  Google Scholar 

  • Zhou T, Yan J, Masuda J et al (2011) Investigation on shape transferability in ultraprecision glass molding press for microgrooves. Precis Eng 35(2):214–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfeng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, T. (2018). Precision Molding of Microstructures on Chalcogenide Glass for Infrared Optics. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0098-1_20

Download citation

Publish with us

Policies and ethics