Skip to main content

Laser Patterning of Metallic Glass

  • Reference work entry
  • First Online:
Micro and Nano Fabrication Technology

Part of the book series: Micro/Nano Technologies ((MNT))

  • 2116 Accesses

Abstract

Metallic glass (MG) with a long-range topological disorder structure exhibits some unique mechanical, physical, and chemical properties compared to its crystalline counterpart, such as high hardness and strength, large elastic limit as well as superior resistance to wear and corrosion. These features make MGs to be regarded as very promising materials. Recent studies indicate that patterned MG surface with micro-/nanostructures on it can hugely enhance its biological activity and compatibility, catalytic activity, and hydrophobicity, extending the application of MGs in biomedicine, waterproof material, industrial catalysis, sewage treatment, etc. This chapter summarizes the potential methods for patterning MGs firstly, mainly including mechanical machining, thermoplastic shaping, chemical etching, and laser irradiation. Then, the emphasis is on nanosecond pulsed laser patterning of MGs, and its recent achievement and development will be addressed. The surface structures patterned by single nanosecond pulsed laser irradiation as well as line laser irradiation under various experimental parameters and environmental atmospheres will be introduced, and their formation mechanisms will be discussed. Accordingly, a new surface patterning method of MGs, i.e., nanosecond pulsed laser irradiation inducing selective thermoplastic extrusion in nitrogen gas, will be provided. Furthermore, the effect of patterned microstructures on the surface hydrophobicity will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bakkal M, Shih AJ, Scattergood RO (2004a) Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass. Int J Mach Tools Manuf 44:915–925

    Article  Google Scholar 

  • Bakkal M, Liu CT, Watkins TR et al (2004b) Oxidation and crystallization of Zr-based bulk metallic glass due to machining. Intermetallics 12:195–204

    Article  Google Scholar 

  • Bloembergen N (1973) Role of cracks, pores, and absorbing inclusions on laser-induced damage threshold at surfaces of transparent dielectrics. Appl Opt 12:661–664

    Article  Google Scholar 

  • Brinksmeier E, Riemer O, Glabe R et al (2010) Submicron functional surfaces generated by diamond machining. CIRP Ann Manuf Technol 59:535–538

    Article  Google Scholar 

  • Bulgakova NM, Bulgakov AV (2001) Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl Phys A Mater Sci Process 73:199–208

    Article  Google Scholar 

  • Byrne CJ, Eldrup M (2008) Materials science – bulk metallic glasses. Science 321:502–503

    Article  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  • Chen N, Frank R, Asao N et al (2011) Formation and properties of Au-based nanograined metallic glasses. Acta Mater 59:6433–6440

    Article  Google Scholar 

  • Chen N, Shi XT, Witte R et al (2013) A novel Ti-based nanoglass composite with submicron-nanometer-sized hierarchical structures to modulate osteoblast behaviors. J Mater Chem B 1:2568–2574

    Article  Google Scholar 

  • Feit MD, Rubenchik AM (2003) Influence of subsurface cracks on laser induced surface damage. In: SPIE boulder damage symposium XXXV annual symposium on optical materials for high power lasers, Boulder, Colorado, 22–24 Sept 2003

    Google Scholar 

  • Fujita K, Morishita Y, Nishiyama N et al (2005) Cutting characteristics of bulk metallic glass. Mater Trans 46:2856–2863

    Article  Google Scholar 

  • Gilbert CJ, Ritchie RO, Johnson WL (1997) Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl Phys Lett 71:476–478

    Article  Google Scholar 

  • Guo P, Lu Y, Ehmann KF et al (2014a) Generation of hierarchical micro-structures for anisotropic wetting by elliptical vibration cutting. CIRP Ann Manuf Technol 63:553–556

    Article  Google Scholar 

  • Guo SF, Qiu JL, Yu P et al (2014b) Fe-based bulk metallic glasses: Brittle or ductile? Appl Phys Lett 105:161901

    Article  Google Scholar 

  • Hasan M, Kumar G (2016) High strain rate thermoplastic demolding of metallic glasses. Scr Mater 123:140–143

    Article  Google Scholar 

  • Hasan M, Schroers J, Kumar G (2015) Functionalization of metallic glasses through hierarchical patterning. Nano Lett 15:963–968

    Article  Google Scholar 

  • He P, Li LK, Wang F et al (2016a) Bulk metallic glass mold for high volume fabrication of micro optics. Microsyst Technol 22:617–623

    Article  Google Scholar 

  • He YX, Peng Y, Li Z et al (2016b) Bio-inspired multifunctional metallic glass. Sci China Chem 59:271–276

    Article  Google Scholar 

  • Hu Z, Gorumlu S, Aksak B et al (2015) Patterning of metallic glasses using polymer templates. Scr Mater 108:15–18

    Article  Google Scholar 

  • Huang H, Yan JW (2017) Surface patterning of Zr-based metallic glass by laser irradiation induced selective thermoplastic extrusion in nitrogen gas. J Micromech Microeng 27:075007

    Article  Google Scholar 

  • Huang H, Zhao HW, Shi CL et al (2012) Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope. AIP Adv 2:042193

    Article  Google Scholar 

  • Huang H, Jun N, Jiang MQ et al (2016a) Nanosecond pulsed laser irradiation induced hierarchical micro/nanostructures on Zr-based metallic glass substrate. Mater Des 109:153–161

    Article  Google Scholar 

  • Huang H, Noguchi J, Yan JW (2016b) Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass. Appl Phys A Mater Sci Process 122:881

    Article  Google Scholar 

  • Inoue A, Takeuchi A (2010) Recent development and applications of bulk glassy alloys. Int J Appl Glas Sci 1:273–295

    Article  Google Scholar 

  • Jagdheesh R (2014) Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses. Langmuir 30:12067–12073

    Article  Google Scholar 

  • Jiang MQ, Wei YP, Wilde G et al (2015) Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation. Appl Phys Lett 106:021904

    Article  Google Scholar 

  • Kaltenboeck G, Harris T, Sun K et al (2014) Accessing thermoplastic processing windows in metallic glasses using rapid capacitive discharge. Sci Rep 4:6441

    Article  Google Scholar 

  • Ketov SV, Shi XT, Xie GQ et al (2015) Nanostructured Zr-Pd metallic glass thin film for biochemical applications. Sci Rep 5:7799

    Article  Google Scholar 

  • Khun NW, Yu H, Chong ZZ et al (2016) Mechanical and tribological properties of Zr-based bulk metallic glass for sports applications. Mater Des 92:667–673

    Article  Google Scholar 

  • Kumar G, Tang HX, Schroers J (2009) Nanomoulding with amorphous metals. Nature 457:868–872

    Article  Google Scholar 

  • Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85:77–87

    Article  Google Scholar 

  • Li T, Almond DP, Rees DAS (2011) Crack imaging by scanning pulsed laser spot thermography. NDT&E Int 44:216–225

    Article  Google Scholar 

  • Li N, Xia T, Heng LP et al (2013) Superhydrophobic Zr-based metallic glass surface with high adhesive force. Appl Phys Lett 102:251603

    Article  Google Scholar 

  • Li N, Chen W, Liu L (2016) Thermoplastic micro-forming of bulk metallic glasses: a review. JOM J Miner Met Mater Soc 68:1246–1261

    Article  Google Scholar 

  • Liu Z, Schroers J (2015) General nanomoulding with bulk metallic glasses. Nanotechnology 26:145301

    Article  Google Scholar 

  • Liu Y, Jiang MQ, Yang GW et al (2011) Surface rippling on bulk metallic glass under nanosecond pulse laser ablation. Appl Phys Lett 99:191902

    Article  Google Scholar 

  • Liu Y, Jiang MQ, Yang GW et al (2012) Saffman-Taylor fingering in nanosecond pulse laser ablating bulk metallic glass in water. Intermetallics 31:325–329

    Article  Google Scholar 

  • Ma J, Zhang XY, Wang DP et al (2014) Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance. Appl Phys Lett 104:173701

    Article  Google Scholar 

  • Marti K (2007) Sampling the sun. Science 318:401–402

    Article  Google Scholar 

  • Martinez-Calderon M, Manso-Silvan M, Rodriguez A et al (2016) Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci Rep 6:36296

    Article  Google Scholar 

  • Miotello A, Kelly R (1995) Critical-assessment of thermal models for laser sputtering at high fluences. Appl Phys Lett 67:3535–3537

    Article  Google Scholar 

  • Myrach P, Polomski B, Le Claire E et al (2016) Thermographic crack detection in hot steel surfaces. In: 19th world conference on non-destructive testing, Munich, Germany, 13–17 June 2016

    Google Scholar 

  • Nagendra N, Ramamurty U, Goh TT et al (2000) Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater 48:2603–2615

    Article  Google Scholar 

  • Pauly S, Lober L, Petters R et al (2013) Processing metallic glasses by selective laser melting. Mater Today 16:37–41

    Article  Google Scholar 

  • Plummer J, Johnson WL (2015) Is metallic glass poised to come of age? Nat Mater 14:553–555

    Article  Google Scholar 

  • Sarac B, Ketkaew J, Popnoe DO et al (2012) Honeycomb structures of bulk metallic glasses. Adv Funct Mater 22:3161–3169

    Article  Google Scholar 

  • Sarac B, Bera S, Balakin S et al (2017) Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shaping. Mater Sci Eng C Mater Biol Appl 73:398–405

    Article  Google Scholar 

  • Schlichting J, Ziegler M, Maierhofer C et al (2012) Flying laser spot thermography for the fast detection of surface breaking cracks. In: 18th world conference on nondestructive testing, Durban, South Africa, 16–20 Apr 2012

    Google Scholar 

  • Schroers J (2010) Processing of bulk metallic glass. Adv Mater 22:1566–1597

    Article  Google Scholar 

  • Schroers J (2013) Bulk metallic glasses. Phys Today 66:32–37

    Article  Google Scholar 

  • Ta DV, Dunn A, Wasley TJ et al (2015) Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl Surf Sci 357:248–254

    Article  Google Scholar 

  • Telford M (2004) The case for bulk metallic glass. Mater Today 7:36–43

    Article  Google Scholar 

  • Trexler MM, Thadhani NN (2010) Mechanical properties of bulk metallic glasses. Prog Mater Sci 55:759–839

    Article  Google Scholar 

  • Vorobyev AY, Guo CL (2015) Multifunctional surfaces produced by femtosecond laser pulses. J Appl Phys 117:033103

    Article  Google Scholar 

  • Wang WH (2012) The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci 57:487–656

    Article  Google Scholar 

  • Williams E, Brousseau EB (2016) Nanosecond laser processing of Zr41.2Ti13.8Cu12.5Ni10Be22.5 with single pulses. J Mater Process Technol 232:34–42

    Article  Google Scholar 

  • Xia T, Li N, Wu Y et al (2012) Patterned superhydrophobic surface based on Pd-based metallic glass. Appl Phys Lett 101:081601

    Article  Google Scholar 

  • Xu SL, Shimada K, Mizutani M et al (2014) Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic machining with one-point diamond tool. Int J Mach Tools Manuf 86:12–17

    Article  Google Scholar 

  • Yang J, Luo FF, Kao TS et al (2014) Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl 3:e185

    Article  Google Scholar 

  • Yoo JH, Jeong SH, Mao XL et al (2000) Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon. Appl Phys Lett 76:783–785

    Article  Google Scholar 

  • Zhao K, Liu KS, Li JF et al (2009) Superamphiphobic CaLi-based bulk metallic glasses. Scr Mater 60:225–227

    Article  Google Scholar 

  • Zhao M, Abe K, Yamaura S et al (2014) Fabrication of Pd-Ni-P metallic glass nanoparticles and their application as highly durable catalysts in methanol electro-oxidation. Chem Mater 26:1056–1061

    Article  Google Scholar 

  • Zhu ZW, To S, Zhang SJ (2015) Theoretical and experimental investigation on the novel end-fly-cutting-servo diamond machining of hierarchical micro-nanostructures. Int J Mach Tools Manuf 94:15–25

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51705197), Grant-in-Aid for JSPS Fellows (Grant No. 26-04048), and Young Talent Lift Project of China Association for Science and Technology (CAST) and Chinese Mechanical Engineering Society (CMES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Huang, H., Yan, J. (2018). Laser Patterning of Metallic Glass. In: Yan, J. (eds) Micro and Nano Fabrication Technology. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-0098-1_15

Download citation

Publish with us

Policies and ethics