Skip to main content

Multimode Fibers for Data Centers

  • Reference work entry
  • First Online:
Book cover Handbook of Optical Fibers

Abstract

Data centers (DCs) have evolved rapidly to deliver higher data rates, higher density, and longer distances while staying as economical as possible. Multimode fiber (MMF) operated at 850 nm is the leading optical medium now used in DCs for distances up to 100–150 m, enabling utilization of vertical-cavity surface-emitting lasers (VCSELs) to provide low-cost optical connectivity compared to single-mode fiber solutions. However recent trends in DC drive the MMF-based systems toward several new fronts, including wavelength division multiplexing involving longer wavelengths (BiDi and SWDM), extended reach through engineered links, and variations in the core dimensions or operating wavelength of the MMF. In this chapter, the role of MMFs in DCs will be reviewed, beginning with a discussion of the fundamental aspects of light propagation, modal bandwidth and other fiber characteristics, and link models. Various approaches to address transmission limitations due to chromatic and modal dispersion are then summarized. One such approach is to operate the MMF at longer wavelengths to take advantage of the lower chromatic dispersion. The concept of a “universal” fiber that bridges the gap between the multimode and single-mode transmission is then introduced. Recent trends in DC are also reviewed, and one clear conclusion is that the role of MMF in DC is still evolving to meet the increased needs for scalability, density, data rate, and economic requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. S. Abbott, S. Bickham, P. Dainese, M-J Li, Fibers for short-distance applications, in Optical Fiber Telecommunications VIA, ed. by I. Kaminow, T. Li, A. Wilner (Elsevier, New York, 2013), p. 243

    Chapter  Google Scholar 

  • S. Bickham et al. Design and characterization of bend-insensitive multimode fiber, in Proceedings of IWCS 2011, (2011), pp. 154–159

    Google Scholar 

  • S. Bickham et al., High bandwidth multimode fiber for the 1300 nm window, in Paper 7–7, Proceedings of IWCS 2014 (2014)

    Google Scholar 

  • X. Chen, M.-J. Li, J.E. Hurley, K.A. Hoover, D.R. Powers, R.S. Vodhanel, Chromatic dispersion compensated 25Gb/s multimode VCSEL transmission around 850nm with a MMF jumper, in OFC/NFOEC Technical Digest OW1B (2013)

    Google Scholar 

  • X. Chen et al. 25 Gb/s transmission over 820m of MMF using a multimode launch from an integrated silicon photonics transceiver. Opt. Express 22(2), 2070–2077 (2014)

    Article  CAS  Google Scholar 

  • X. Chen et al. Long wavelength multimode fiber transmissions for high speed data center applications, in Proceedings of OECC (2015)

    Google Scholar 

  • X. Chen, J.E. Hurley, S. Bickham, J. Abbott, B. Chow, D. Coleman, M.-J. Li, Evaluation of extended reach capability of 40G BiDi VCSEL-based WDM transmission over OM4 multimode fibers, in Proceedings of SPIE 9772, Broadband Access Communication Technologies X, 977206 (2016a)

    Google Scholar 

  • X. Chen, J.E. Hurley, J. Stone, J.D. Downie, I. Roudas, D. Coleman, M. Li, Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th4E.4 (2016b)

    Google Scholar 

  • X. Chen, J. Abbott, D. Powers, D. Coleman, M-J. Li, Statistical treatment of IEEE spreadsheet model for VCSEL-multimode fiber transmissions, in OECC/PS2016 July 2016 Niigata, Japan Paper TuD4-3 (2016c)

    Google Scholar 

  • X. Chen, J.E. Hurley, J.S. Stone, A.R. Zakharian, D. Coleman, M.-J. Li, Design of universal fiber with demonstration of full system reaches over 100G SR4, 40G sWDM, and 100G CWDM4 transceivers. Opt. Express 24, 18492–18500 (2016d)

    Article  Google Scholar 

  • X. Chen, J.E. Hurley, D. Gui, Y. Li, J.S. Stone, M.-J. Li, Demonstration of SWDM transmission over OM4 multimode fiber with modal dispersion compensation, in Optical Fiber Communication Conference, OSA Technical Digest (Online) (Optical Society of America, 2017), Paper Tu2B.3 (2017)

    Google Scholar 

  • D.G. Cunningham, W.G. Lane, Gigabit Ethernet Networking (Macmillan Technical Publishing, New York, 1999)

    Google Scholar 

  • G. DiGiovanni, S. Das, L. Blyler, W. White, R. Boncek, S.G. Golowich, Chapter 2: design of optical fibers for communications systems. In: I. Kaminow, T. Li (eds.) Optical Fiber Telecommunications IVB, Academic Press, (New York, 2002)

    Chapter  Google Scholar 

  • Ethernet Alliance, 2017. www.ethernetalliance.org/wp-content/.../Ethernet-Roadmap-2sides-Final-5Mar.pdf

  • W. Freude, Vielmodenfasern, in Optische Kommuniikationstechnik: Handbuch fur Wissenschaft und Industrie, ed. by E. Voges K. Petermann (Springer, Berlin, 2002)

    Chapter  Google Scholar 

  • A. Gholami, D. Molin, P. Sillard, Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL- based gigabit Ethernet transmissions. Photonics Technol. Lett. 21, 645–647 (2009)

    Article  Google Scholar 

  • D. Hanson, D. Cunningham, P. Dawe, D. Dolfi, 10Gb/s link budget spreadsheet (version 3.1.16a) Excel® spreadsheet on IEEE website. http://www.ieee802.org/3/ae/public/index.html

  • W. Hurley, T. Cooke, Bend-insensitive multimode fibers enable advanced cable performance, in Paper 13-4, Proceedings of IWCS (2009)

    Google Scholar 

  • T. Kise et al. Development of 1060 nm 25-Gb/s VCSEL and demonstration of 300 m and 500 m system reach using MMFs and link optimized for 1060 nm, OFC 2014, paper Th4G (2014)

    Google Scholar 

  • D.M. Kuchta, A.V. Rylyakov, C.L. Schow, J.E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, J. Tatum, A 55Gb/s directly modulated 850 nm VCSEL-based optical link, in IEEE Photonics Conference 2012 (IPC 2012). Post Deadline Paper PD 1.5 (2012)

    Google Scholar 

  • D. Molin, M. Bigot-Astruc, P. Sillard, Chromatic dispersion compensated multimode fibers for data communications. ECOC 2011, paper Tu.3.C.3 (2011)

    Google Scholar 

  • P. Nouchi, P. Sillard, D. Molin, Optical fibers, in Fibre Optic Communication-Key Devices, ed. by H. Venghaus N. Grote (Springer, Berlin, 2012)

    Google Scholar 

  • M.C. Nowell, D.G. Cunningham, D.C. Hanson, L.G. Kazovsky, Evaluation of Gb/s laser based fibre LAN links: Review of the gigabit Ethernet model. Opt. Quant. Electron. 32, 169 (2000)

    Article  Google Scholar 

  • P. Pepeljugoski, M.J. Hackert, J.S. Abbott, S.E. Swanson, S.E. Golowich, A.J. Ritger, P. Kolesar, Y.C. Chen, P. Pleunis, Development of system specification for laser-optimized 50μm multimode Fiber for multigigabit short-wavelength LANS. J. Lightwave Technol. 21, 1256 (2003a)

    Article  Google Scholar 

  • P. Pepeljugoski, S.E. Golowich, A.J. Ritger, P. Kolesar, A. Ristekski, Modeling and simulation of next-generation multimode Fiber links. J. Lightwave Technol. 21, 1242 (2003b)

    Article  Google Scholar 

  • J. Petrilla, Example MMF link model “ExampleMMF LinkModel 130503.xlsx” (2013). http://www.ieee802.org/3/bm/public/may13/index.html

  • R. Pimpinella, J. Castro, B. Kose, B. Lane, Dispersion compensated multimode fiber, in Proceedings of the 60th IWCS Conference (2011), p. 410

    Google Scholar 

  • E. Simpanen et al. 1060 nm single and multimode VCSELs for up to 50 Gb/s modulation, to be published in Proceedings of 2017 IEEE Photonics Conference (2017)

    Google Scholar 

  • N. Suzuki et al. 25 Gbit/s operation of InGaAs-based VCSELs. Electron. Lett. 42, 975 (2006)

    Article  CAS  Google Scholar 

  • T. Suzuki et al. Reliability study of 1060nm 25Gbps VCSEL in terms of high speed modulation, in Proceedings of SPIE 8276, 827604-1-8 (2012)

    Google Scholar 

  • M. Tan et al. Universal photonic interconnect for data centers, in Proceedings of OFC 2017, Paper Tu2B.4 (2017)

    Google Scholar 

  • J.A. Tatum, D. Gazula, L.A. Graham, J.K. Guenter, R.H. Johnson, J. King, C. Kocot, G.D. Landry, I.E.E.E. Senior Member, I. Lyubomirsky, A.N. MacInnes, E.M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, F. Tang, VCSEL-based interconnects for current and future data centers. J. Lightwave Technol. 33, 727 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, X., Bickham, S.R., Abbott, J.S., Coleman, J.D., Li, MJ. (2019). Multimode Fibers for Data Centers. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_68

Download citation

Publish with us

Policies and ethics