Skip to main content

Optical Fibers in Terahertz Domain

  • Reference work entry
  • First Online:
Handbook of Optical Fibers

Abstract

The terahertz (THz) frequency range spans between the microwave and the photonic domains. For more than 20 years, it is experiencing growing expansion justified by the new properties offered in telecommunication, spectroscopy, and imaging technologies, enabling numerous applications for today’s society needs. Similarly as the optical fibers in the optical domain, THz fibers are key components for realizing complex, compact, and robust systems that are required by THz applications. Nevertheless, the developments of THz fibers are hindered by the strong degradations of material properties at THz frequencies. These constraints require to investigate and to develop THz fibers with innovative and disruptive designs, which make the development of THz fibers challenging and very stimulating. Numerous strategies are inspired from the recent innovations in the field of specialty optical fibers. Since dry air is certainly the most favorable medium to propagate THz radiations. Two major approaches have been investigated. The first one is based on the propagation of THz waves into a fiber with a design that favors a large portion of evanescent field in air. The second way of beating these limits is by confining the THz waves in a hollow-core fiber with the help of reflectors in the fiber cladding. The main recent developments of THz fibers are presented in this chapter. The guiding mechanism of each THz fiber is detailed, in addition to a presentation of the recent experimental demonstrations and analyses of their drawbacks and advantageous properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Y. Abe, Y. Matsuura, Y.-W. Shi, Y. Wang, H. Uyama, M. Miyagi, Polymer-coated hollow fiber for CO2 laser delivery. Opt. Lett. 23, 89–90 (1998)

    Article  CAS  Google Scholar 

  • J. Anthony, R. Leonhardt, A. Argyros, M.C.J. Large, Characterization of a microstructured Zeonex terahertz fiber. J. Opt. Soc. Am. B 28(5), 1013–1018 (2011a)

    Article  CAS  Google Scholar 

  • J. Anthony, R. Leonhardt, S.G. Leon-Saval, A. Argyros, THz propagation in Kagome hollow-core microstructured fibers. Opt. Express 19, 18470–18478 (2011b)

    Article  CAS  Google Scholar 

  • S. Atakaramians, S. Afshar V, B.M. Fischer, D. Abbott, T.M. Monro, Porous fibers: a novel approach to low loss THz waveguides. Opt. Express 16(12), 8845–8854 (2008)

    Article  Google Scholar 

  • S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B.M. Fischer, D. Abbott, T.M. Monro, THz porous fibers: design, fabrication and experimental characterization. Opt. Express 17(16), 14053–15062 (2009)

    Article  CAS  Google Scholar 

  • H. Bao, K. Nielsen, H.K. Rasmussen, P.U. Jepsen, O. Bang, Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20, 29507–29517 (2012)

    Article  Google Scholar 

  • H. Bao, K. Nielsen, H.K. Rasmussen, P.U. Jepsen, O. Bang, Design and optimization of mechanically down-doped terahertz fiber directional couplers. Opt. Express 22, 9486–9497 (2014)

    Article  Google Scholar 

  • W. Belardi, J.C. Knight, Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 39, 1853–1856 (2014)

    Article  CAS  Google Scholar 

  • F. Benabid, J.C. Knight, G. Antonopoulos, P. St, J. Russell, Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 298, 399–402 (2002)

    Article  CAS  Google Scholar 

  • B. Bowden, J.A. Harrington, O. Mitrofanov, Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32, 2945–2947 (2007)

    Article  CAS  Google Scholar 

  • B. Bowden, J.A. Harrington, O. Mitrofanov, Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings. Appl. Phys. Lett. 93(18), 181104 (2008)

    Article  CAS  Google Scholar 

  • H.-C. Chang, C.-K. Sun, Subwavelength dielectric-fiber-based THz coupler. J. Lightwave Technol. 27(11), 1489–1495 (2009)

    Article  Google Scholar 

  • L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, C.-K. Sun, Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt. Lett. 31, 308–310 (2006)

    Article  Google Scholar 

  • H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, C.-K. Sun, Investigation on spectral loss characteristics of subwavelength terahertz fibers. Opt. Lett. 32, 1017–1019 (2007a)

    Article  Google Scholar 

  • H.-W. Chen, J.-Y. Lu, L.-J. Chen, P.-J. Chiang, H.-C. Chang, Y.-T. Li, C.-L. Pan, C.-K. Sun, in THz Fiber Directional Coupler. Proceedings of CLEO/QELS’2007, Baltimore (2007b)

    Google Scholar 

  • H. Chen, W.-J. Lee, H.-Y. Huang, C.-M. Chiu, Y.-F. Tsai, T.-F. Tseng, J.-T. Lu, W.-L. Lai, C.-K. Sun, Performance of THz fiber-scanning near-field microscopy to diagnose breast tumors. Opt. Express 19, 19523–19531 (2011)

    Article  CAS  Google Scholar 

  • C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, C.-K. Sun, All-terahertz fiber-scanning near-field microscopy. Opt. Lett. 34, 1084–1086 (2009)

    Article  Google Scholar 

  • M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, H. Han, Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers. Opt. Express 16, 7–12 (2008)

    Article  CAS  Google Scholar 

  • F. Couny, F. Benabid, P. Roberts, P. Light, M. Raymer, Generation and photonic guidance of multi-octave optical-frequency combs. Science 318(5853), 1118–1121 (2007)

    Article  CAS  Google Scholar 

  • P.D. Cunningham, N.N. Valdes, F.A. Vallejo, L.M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A.K. Jen, J.C. Williams, R.J. Twieg, Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 109(4), 043505 (2011)

    Article  CAS  Google Scholar 

  • P. Doradla, C.S. Joseph, J. Kumar, R.H. Giles, Characterization of bending loss in hollow flexible terahertz waveguides. Opt. Express 20, 19176–19184 (2012)

    Article  CAS  Google Scholar 

  • M.A. Duguay, Y. Kokubun, T.L. Koch, L. Pfeiffer, Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 49, 13 (1986)

    Article  CAS  Google Scholar 

  • A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, M. Skorobogatiy, Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method. Opt. Express 17(10), 8012–8028 (2009)

    Article  CAS  Google Scholar 

  • A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, M. Skorobogatiy, Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique. Opt. Express 18(13), 13813–13828 (2010)

    Article  CAS  Google Scholar 

  • A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, M. Skorobogatiy, Transmission measurements of hollow-core THz Bragg fibers. J. Opt. Soc. Am. B 28, 896–907 (2011)

    Article  CAS  Google Scholar 

  • Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998)

    Article  CAS  Google Scholar 

  • Y. Fink, D.J. Ripin, S. Fan, C. Chen, J.D. Joannopoulos, E.L. Thomas, Guiding optical light in air using an all-dielectric structure. J. Lightwave Technol. 17, 2039–2041 (1999)

    Article  Google Scholar 

  • F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, J.-M. Blondy, Simplified hollow-core photonic crystal fiber. Opt. Lett. 35, 1157–1159 (2010)

    Article  Google Scholar 

  • H. Han, H. Park, M. Cho, J. Kim, Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80, 2634–2636 (2002)

    Article  CAS  Google Scholar 

  • J.A. Harrington, R. George, P. Pedersen, E. Mueller, Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation. Opt. Express 12, 5263–5268 (2004)

    Article  CAS  Google Scholar 

  • A. Hassani, A. Dupuis, M. Skorobogatiy, Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92(7), 071101 (2008)

    Article  CAS  Google Scholar 

  • B. Hong, M. Swithenbank, N. Somjit, J. Cunningham, I. Robertson, Asymptotically single-mode small-core terahertz Bragg fibre with low loss and low dispersion. J. Phys. D. Appl. Phys. 50(4), 045104 (2017)

    Article  CAS  Google Scholar 

  • M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, J.D. Joannopoulos, An all-dielectric coaxial waveguide. Science 289, 415–419 (2000)

    Article  CAS  Google Scholar 

  • J.C. Knight, Photonic crystal fibers. Nature 424, 847–851 (2003)

    Article  CAS  Google Scholar 

  • C.H. Lai, Y.C. Hsueh, H.W. Chen, Y.J. Huang, H.C. Chang, C.K. Sun, Low-index terahertz pipe waveguides. Opt. Lett. 34(21), 3457–3459 (2009)

    Article  Google Scholar 

  • C.H. Lai, B. You, J.Y. Lu, T.A. Liu, J.L. Peng, C.K. Sun, H.C. Chang, Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. Opt. Express 18(1), 309–322 (2010)

    Article  CAS  Google Scholar 

  • C.-H. Lai, T. Chang, Y.-S. Yeh, Characteristics of bent terahertz antiresonant reflecting pipe waveguides. Opt. Express 22, 8460–8472 (2014)

    Article  Google Scholar 

  • J. Li, K. Nallappan, H. Guerboukha, M. Skorobogatiy, 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications. Opt. Express 25, 4126–4144 (2017)

    Article  CAS  Google Scholar 

  • J. Lou, L. Tong, Z. Ye, Modeling of silica nanowires for optical sensing. Opt. Express 13, 2135–2140 (2005)

    Article  CAS  Google Scholar 

  • W. Lu, A. Argyros, Terahertz spectroscopy and imaging with flexible tube-lattice fiber probe. J. Lightwave Technol. 32(23), 4019–4025 (2014)

    Google Scholar 

  • J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, C.-K. Sun, THz interferometric imaging using subwavelength plastic fiber based THz endoscopes. Opt. Express 16, 2494–2501 (2008)

    Article  Google Scholar 

  • J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang, Y.-J. Hwang, C.-K. Sun, Bending loss of terahertz pipe waveguides. Opt. Express 18, 26332–26338 (2010)

    Article  CAS  Google Scholar 

  • J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, I.-J. Chen, Y.-J. Hwang, H.-c. Chang, C.-K. Sun, Terahertz polarization-sensitive rectangular pipe waveguides. Opt. Express 19, 21532–21539 (2011a)

    Article  Google Scholar 

  • J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-c. Chang, C.-K. Sun, Terahertz pipe-waveguide-based directional couplers. Opt. Express 19, 26883–26890 (2011b)

    Article  Google Scholar 

  • W. Lu, S. Lou, A. Argyros, Investigation of flexible low-loss hollow-core fibres with tube-lattice cladding for terahertz radiation. IEEE J. Sel. Top. Quantum Electron. 22(2), 214–220 (2016)

    Article  CAS  Google Scholar 

  • T. Ma, A. Markov, L. Wang, M. Skorobogatiy, Graded index porous optical fibers – dispersion management in terahertz range. Opt. Express 23, 7856–7869 (2015)

    Article  CAS  Google Scholar 

  • A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, M. Skorobogatiy, Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz. J. Opt. Soc. Am. B 29, 2116–2123 (2012)

    Article  CAS  Google Scholar 

  • R.W. McGowan, G. Gallot, D. Grischkowsky, Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. Opt. Lett. 24, 1431–1433 (1999)

    Article  CAS  Google Scholar 

  • O. Mitrofanov, J.A. Harrington, Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion. Opt. Express 18(3), 1898–1903 (2010)

    Article  CAS  Google Scholar 

  • M. Miyagi, A. Hongo, S. Kawakami, Design theory of dielectric coated circular metallic waveguides for infrared transmission. J. Lightwave Technol. LT-2, 116–126 (1984)

    Article  CAS  Google Scholar 

  • M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties. J. Appl. Phys. 102(4), 043517 (2007)

    Article  CAS  Google Scholar 

  • M. Navarro-Cía, M.S. Vitiello, C.M. Bledt, J.E. Melzer, J.A. Harrington, O. Mitrofanov, Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5–5 THz band. Opt. Express 21, 23748–23755 (2013)

    Article  CAS  Google Scholar 

  • E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, J.-M. Blondy, Broadband terahertz transmission within the air channel of thin-wall pipe. Opt. Lett. 36, 1782–1784 (2011)

    Article  Google Scholar 

  • K. Nielsen, H.K. Rasmussen, A.J.L. Adam, P.C.M. Planken, O. Bang, P.U. Jepsen, Bendable, low-loss Topas fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2009)

    Article  CAS  Google Scholar 

  • K. Nielsen, H.K. Rasmussen, P.U. Jepsen, O. Bang, Porous-core honeycomb bandgap THz fiber. Opt. Lett. 36(5), 666–668 (2011)

    Article  Google Scholar 

  • G.J. Pearce, G.S. Wiederhecker, C.G. Poulton, S. Burger, P. St, J. Russell, Models for guidance in Kagome-structured hollow-core photonic crystal fibers. Opt. Express 15, 12680–12685 (2007)

    Article  CAS  Google Scholar 

  • F. Poletti, Nested antiresonant nodeless hollow core fiber. Opt. Express 22, 23807–23828 (2014)

    Article  Google Scholar 

  • A.D. Pryamikov, A.S. Biriukov, A.F. Kosolapov, V.G. Plotnichenko, S.L. Semjonov, E.M. Dianov, Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm. Opt. Express 19(2), 1441–1448 (2011)

    Article  CAS  Google Scholar 

  • M. Rozé, B. Ung, A. Mazhorova, M. Walther, M. Skorobogatiy, Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance. Opt. Express 19, 9127–9138 (2011)

    Article  Google Scholar 

  • P.S.J. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)

    Article  CAS  Google Scholar 

  • V. Setti, L. Vincetti, A. Argyros, Flexible tube lattice fibers for terahertz applications. Opt. Express 21, 3388–3399 (2013)

    Article  CAS  Google Scholar 

  • M. Skorobogatiy, A. Dupuis, Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90, 113514 (2007)

    Article  CAS  Google Scholar 

  • A.W. Snyder, J. Love, Optical Waveguide Theory (Springer, Norwell, 1983). ISBN 978-0-412-09950-2, 738. Hardcover

    Google Scholar 

  • M. Sumetsky, How thin can a microfiber be and still guide light? Opt. Lett. 31, 870–872 (2006)

    Article  CAS  Google Scholar 

  • X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, M. Miyagi, Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film. Opt. Lett. 34, 2231–2233 (2009)

    Article  Google Scholar 

  • B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002)

    Article  CAS  Google Scholar 

  • B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, M. Skorobogatiy, High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss. J. Opt. Soc. Am. B 28, 917–921 (2011a)

    Article  CAS  Google Scholar 

  • B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, M. Skorobogatiy, Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express 19, B848–B861 (2011b)

    Article  CAS  Google Scholar 

  • L. Vincetti, Single-mode propagation in triangular tube lattice hollow-core terahertz fiber. Opt. Commun. 283, 979–984 (2010)

    Article  CAS  Google Scholar 

  • L. Vincetti, V. Setti, Waveguiding mechanism in tube lattice fibers. Opt. Express 18(22), 23133–23146 (2010)

    Article  CAS  Google Scholar 

  • L. Vincetti, V. Setti, M. Zoboli, Terahertz tube lattice fibers with octagonal symmetry. IEEE Photon. Technol. Lett. 22, 972–974 (2010)

    Article  Google Scholar 

  • M.S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H.E. Beere, D.A. Ritchie, Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide. J. Appl. Phys. 110, 063112 (2011)

    Article  CAS  Google Scholar 

  • Y.Y. Wang, N.V. Wheeler, F. Couny, P.J. Roberts, F. Benabid, Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36, 669–671 (2011)

    Article  CAS  Google Scholar 

  • F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Opt. Express 15, 11952–11958 (2007)

    Article  CAS  Google Scholar 

  • D.S. Wu, A. Argyros, S.G. Leon-Saval, Reducing the size of hollow terahertz waveguides. J. Lightwave Technol. 29(1), 97–103 (2011)

    Article  Google Scholar 

  • M. Xiao, J. Liu, W. Zhang, J. Shen, Y. Huang, THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique. Opt. Commun. 298–299, 101–105 (2013a)

    Article  CAS  Google Scholar 

  • M. Xiao, J. Liu, W. Zhang, J. Shen, Y. Huang, Self-supporting polymer pipes for low loss single-mode THz transmission. Opt. Express 21, 19808–19815 (2013b)

    Article  CAS  Google Scholar 

  • J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, W. Liu, 3D printed low-loss THz waveguide based on Kagome photonic crystal structure. Opt. Express 24, 22454–22460 (2016)

    Article  Google Scholar 

  • B. You, J.-Y. Lu, Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide. Opt. Express 24, 18013–18023 (2016)

    Article  CAS  Google Scholar 

  • B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, J.-L. Peng, Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides. Opt. Express 18, 19353–19360 (2010a)

    Article  CAS  Google Scholar 

  • B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-L. Pan, Subwavelength plastic wire terahertz time-domain spectroscopy. Appl. Phys. Lett. 96, 051105 (2010b)

    Article  CAS  Google Scholar 

  • B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, J.-L. Peng, Terahertz refractive index sensors using dielectric pipe waveguides. Opt. Express 20, 5858–5866 (2012)

    Article  CAS  Google Scholar 

  • L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Opt. Express 16, 13349–13353 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Humbert .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Humbert, G. (2019). Optical Fibers in Terahertz Domain. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-7087-7_33

Download citation

Publish with us

Policies and ethics