Skip to main content

Fiber Optic Hydrophone

  • Living reference work entry
  • First Online:
Encyclopedia of Ocean Engineering
  • 28 Accesses

Synonyms

Evanescent wave (EW); Fabry-Perot interferometer (FPI); Fiber Bragg grating (FBG); Fiber optic based SPR (FO-SPR); Fiber-optic sensor; Hollow core PCFs (HC-PCFs); Index matching fluid (IMF); Mach-Zehnder interferometer (MZI); Photonic crystal fiber (PCF); Prism based SPR (P-SPR); Sagnac interferometer (SI); Solid core PCFs (SC-PCFs); Surface plasmon resonance (SPR); Surface plasmon wave (SPW); Ultra-violet (UV)

Definition

Fiber optic hydrophone is a sensor used for underwater sound measurement. Its working principle is to obtain underwater sound-related characteristics by measuring the changes in the photosensitive properties of the optical signal transmitted in the optical fiber.

Scientific Fundamentals

For the past few decades, immense research has been carried out to monitor ocean parameters adopting trending techniques. Among them, one of the notable approaches falls in the domain of optical fiber technology. The optical fiber sensing technique has an exclusive feature of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas S, Li F, Qiu J (2018) A review on SHM techniques and current challenges for characteristic investigation of damage in composite material components of aviation industry. Mater Perform Charact 7(1):224–258

    Google Scholar 

  • Bucaro JA, Dardy HD, Carome EF (1977) Fiber-optic hydrophone. J Acoust Soc Am 62(5):1302–1304

    Article  Google Scholar 

  • Chen H, Shao Z, Hao Y, Rong Q (2019) A high-frequency hydrophone using an optical fiber microknot resonator. Opt Commun 446:77–83

    Article  Google Scholar 

  • Doyle C, Staveley C (2003) Application of optical fibre sensors for marine structural monitoring. ACMC/SAMPE Conference on Marine Composites, Plymouth, UK. ISBN 1-870918-02-9

    Google Scholar 

  • Gupta BD, Verma RK (2009) Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J Sens 2009:979761

    Article  Google Scholar 

  • Gupta S, Mizunami T, Yamao T, Shimomura T (1996) Fiber Bragg grating cryogenic temperature sensors. Appl Opt 35(25):5202–5205

    Article  Google Scholar 

  • Heerfordt A, Mohl B, Wahlberg M (2007) A wideband connection to sperm whales: a fiber-optic, deep-sea hydrophone array. Deep-Sea Res I Oceanogr Res Pap 54(3):428–436

    Article  Google Scholar 

  • Kersey AD (1991) Demonstration of a hybrid time/wavelength division multiplexed interferometric fibre sensor array. Electron Lett 27(7):554–555

    Article  Google Scholar 

  • Kumari CU, Samiappan D, Kumar R, Sudhakar T (2019) Fiber optic sensors in ocean observation: a comprehensive review. Optik 179:351–360

    Article  Google Scholar 

  • Lavrov VS, Plotnikov MY, Aksarin SM, Efimov ME, Shulepov VA, Kulikov AV, Kireenkov AU (2017) Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings. Opt Fiber Technol 34:47–51

    Article  Google Scholar 

  • Lim TK, Zhou Y, Lin Y, Yip YM, Lam YL (1999) Fiber optic acoustic hydrophone with double Mach–Zehnder interferometers for optical path length compensation. Opt Commun 159(4–6):301–308

    Article  Google Scholar 

  • Ramsay R (2008) Photonic-crystal fiber characteristics benefit numerous applications. SPIE Newsroom, pp 1–2

    Google Scholar 

  • Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors J 7(8):1118–1129

    Article  Google Scholar 

  • Vivek K, Rajesh R, Sreehari CV, Santhanakrishnan T, Kumar SS, Praveen TV, … Moosad KPB (2017) An improved polymer shell encapsulated fiber laser hydrophone. IEEE Sensors J 18(2):589–595

    Google Scholar 

  • Wang H, Jiang L, Xiang P (2018) Improving the durability of the optical fiber sensor based on strain transfer analysis. Opt Fiber Technol 42:97–104

    Article  Google Scholar 

  • Witkowska A, Lai K, Leon-Saval SG, Wadsworth WJ, Birks TA (2006) All-fiber anamorphic core-shape transitions. Opt Lett 31(18):2672–2674

    Article  Google Scholar 

  • Xiao L, Jin W, Demokan MS, Ho HL, Hoo YL, Zhao C (2005) Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Opt Express 13(22):9014–9022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhui Song .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Song, C. (2021). Fiber Optic Hydrophone. In: Cui, W., Fu, S., Hu, Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6963-5_294-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6963-5_294-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6963-5

  • Online ISBN: 978-981-10-6963-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics