Skip to main content

Design of Renewable Energy Devices

  • Living reference work entry
  • First Online:
Encyclopedia of Ocean Engineering
  • 259 Accesses

Synonyms

ALS – Accidental limit states; DLC – Design load cases; FLS – Fatigue limit states; LS – Limit states; PSF – Partial safety factors; SLS – Serviceability limit states; ULS – Ultimate limit states

Definition

Design is the creation and specification of a structure that fulfills the requirements of functionality, serviceability, and survivability during its lifetime.

Introduction

Renewable energy devices exist in various forms. Wind turbines, wave energy converters, tidal turbines, and photovoltaic systems are typical devices that convert energy, respectively, from wind, wave, tidal, and solar resources into electrical power.

Figure 1(left) shows an offshore wind turbine which is composed of blades, nacelle, drivetrain, control systems, support structures, and so forth. During operation, the cyclic revolutions of the rotor are driven by the aerodynamic, gravitational, and inertial loads on the blades. The kinetic energy is further transferred to the electrical generator through...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • American Bereau of Shipping (ABS) (2013) Guide for building and classing floating offshore wind turbine installations. Houston

    Google Scholar 

  • Au S-K, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263–277

    Article  Google Scholar 

  • Bela A, Le Sourne H, Buldgen L, Rigo P (2017) Ship collision analysis on offshore wind turbine monopile foundations. Mar Struct 51:220–241

    Article  Google Scholar 

  • Bierbooms W, Cheng PW, Larsen, Pedersen BJ, Hansen K (1999) Modelling of extreme gusts for design calculations (NewGust). European Wind Energy Conference, Nice, France

    Google Scholar 

  • Chella MA, Tørum A, Myrhaug D (2012) An overview of wave impact forces on offshore wind turbine substructures. Energy Procedia 20:217–226

    Article  Google Scholar 

  • Choi S-K, Grandhi R, Canfield RA (2006) Reliability-based structural design. Springer-Verlag, London, UK

    Google Scholar 

  • Comité Européen de Normalisation (CEN) (2002) Eurocode: basis of structural design. EN 1990. Bruxelles

    Google Scholar 

  • Degraer S, Brabant R, Rumes B (eds) (2010) Offshore wind farms in the Belgian part of the North Sea: Heading for an understanding of environmental impacts. Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models, Marine Ecosystem Management Unit, Brussels, Belgium

    Google Scholar 

  • Det Norske Veritas (DNV) (2007) Offshore Standard DNV-OS-J101. Design of Offshore Wind Turbine Structures, Høvik, Norway

    Google Scholar 

  • Det Norske Veritas (DNV) (2013) Offshore standard DNV-OS-J103. Design of floating wind turbine structures, Høvik, Norway

    Google Scholar 

  • Det Norske Veritas (DNV) (2014) Offshore standard DNV-OS-J101. Design of offshore wind turbine structures, Høvik, Norway

    Google Scholar 

  • Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley, New York

    Google Scholar 

  • DNV GL (2014) Offshore standard DNVGL-OS-C101. Design of offshore steel structures, general LRFD method, Høvik, Norway

    Google Scholar 

  • Etemaddar M, Blanke M, Gao Z, Moan T (2016) Response analysis and comparison of a spar-type floating offshore wind turbine and an onshore wind turbine under blade pitch controller faults. Wind Energy 19(1):35–50

    Article  Google Scholar 

  • Germanischer Lloyd (GL) Industrial Services GmbH (2010) Guideline for the certification of wind turbines. Hamburg

    Google Scholar 

  • Germanischer Lloyd (GL) Industrial Services GmbH (2012) Guideline for the certification of offshore wind turbines. Hamburg

    Google Scholar 

  • Hu W, Han I, Park S-C, Choi D-H (2012) Multi-objective structural optimization of a HAWT composite blade based on ultimate limit state analysis. J Mech Sci Technol 26(1):129–135

    Article  Google Scholar 

  • Hu W, Choi K, Cho H (2016) Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty. Struct Multidiscip Optim 54(4):953–970

    Article  Google Scholar 

  • International Electrotechnical Comission (2007) IEC 61400-1 wind turbine part 1: design requirements, 3rd edn. Geneva

    Google Scholar 

  • International Electrotechnical Comission (2009) IEC 61400-3 Wind turbines. Part 3: design requirements for offshore wind turbines, 3rd edn. Geneva

    Google Scholar 

  • Jiang Z, Karimirad M, Moan T (2013a) Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events. Wind Energy 17(9):1385–1409

    Google Scholar 

  • Jiang Z, Karimirad M, Moan T (2013b) Response analysis of parked spar-type wind turbine considering blade-pitch mechanism fault. Int J Offshore Polar Eng 23(02):120–128

    Google Scholar 

  • Jiang Z, Moan T, Gao Z, Karimirad M (2013c) Effect of shut-down procedures on dynamic responses of a spar-type floating wind turbine. In: Proceedings of the ASME 2013 32nd international conference on ocean, offshore and arctic engineering, OMAE2013, Nantes

    Google Scholar 

  • Jiang Z, Moan T, Gao Z (2015) A comparative study of shutdown procedures on the dynamic responses of wind turbines. J Offshore Mech Arct Eng 137(1):011904

    Article  Google Scholar 

  • Jiang Z, Hu W, Dong W, Gao Z, Ren Z (2017) Structural reliability analysis of wind turbines: a review. Energies 10(12):2099

    Article  Google Scholar 

  • Jiang Z, Li L, Gao Z, Halse KH, Sandvik PC (2018) Dynamic response analysis of a catamaran installation vessel during the positioning of a wind turbine assembly onto a spar foundation. Mar Struct 61:1–24

    Article  Google Scholar 

  • Kurniawan A, Moan T (2013) Optimal geometries for wave absorbers oscillating about a fixed axis. IEEE J Ocean Eng 38(1):117–130

    Article  Google Scholar 

  • Lassen T, Recho N (2013) Fatigue life analyses of welded structures: flaws. ISTE Ltd, London

    Google Scholar 

  • Márquez-Domínguez S, Sørensen JD (2012) Fatigue reliability and calibration of fatigue design factors for offshore wind turbines. Energies 5(6):1816–1834

    Article  Google Scholar 

  • Moulas D, Shafiee M, Mehmanparast A (2017) Damage analysis of ship collisions with offshore wind turbine foundations. Ocean Eng 143:149–162

    Article  Google Scholar 

  • Myhr A, Maus KJ, Nygaard TA (2011) Experimental and computational comparisons of the OC3-Hywind and tension-leg-buoy (TLB) floating wind turbine conceptual designs. In: Proceedings of the twenty-first International offshore and polar engineering conference, International Society of Offshore and Polar Engineers, Hawaii, USA

    Google Scholar 

  • Nielsen FG, Hanson TD, Skaare B (2006) Integrated dynamic analysis of floating offshore wind turbines. In: Proceedings of 25th international conference on offshore mechanics and arctic engineering (OMAE2006-92291), Hamburg

    Google Scholar 

  • Prendergast LJ, Gavin K, Doherty P (2015) An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng 101:1–11

    Article  Google Scholar 

  • Ronold K, Larsen G (2000) Reliability-based design of wind-turbine rotor blades against failure in ultimate loading. Eng Struct 22(6):565–574

    Article  Google Scholar 

  • Ronold KO, Wedel-Heinen J, Christensen CJ (1999) Reliability-based fatigue design of wind-turbine rotor blades. Eng Struct 21(12):1101–1114

    Article  Google Scholar 

  • Salter SH (1974) Wave power. Nature 249(5459):720–724

    Article  Google Scholar 

  • Shi W, Tan X, Gao Z, Moan T (2016) Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions. Cold Reg Sci Technol 123:121–139

    Article  Google Scholar 

  • Sørensen JD, Toft HS (2010) Probabilistic design of wind turbines. Energies 3(2):241–257

    Article  Google Scholar 

  • Sørensen JD, Toft HS (2014) Safety factors – IEC 61400-1 ed. 4 - background document. DTU Wind Energy-E-Report-0066(EN), Department of Wind Energy, Technical University of Denmark

    Google Scholar 

  • Tarp-Johansen NJ, Madsen PH, Frandsen S (2002) Partial safety factors for extreme load effects. Risø National Laboratory, Roskilde

    Google Scholar 

  • Wang Y, Tian D, He W (2014) Computation of hoisting forces on wind turbine blades using computation fluid dynamics. Appl Mech Mater 446–447:452–457

    Google Scholar 

  • Yang H, Zhu Y, Lu Q, Zhang J (2015) Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines. Renew Energy 78:16–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Jiang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jiang, Z. (2020). Design of Renewable Energy Devices. In: Cui, W., Fu, S., Hu, Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6963-5_198-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6963-5_198-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6963-5

  • Online ISBN: 978-981-10-6963-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics