Skip to main content

Multiscale Translation-Rotation Plastic Flow in Polycrystals

  • Reference work entry
  • First Online:

Abstract

The problem of plastic shear propagation in conditions of high crystal lattice curvature has been researched theoretically and experimentally on the basis of the gauge theory. It has been shown that in conditions of high crystal lattice curvature, the flows of deformation defects reveal plastic distortion, vorticity of plastic shears, and the possibility of their non-crystallographic propagation by a shear banding. Experimental research on the mechanical behavior of the commercially pure Ti samples under alternating bending demonstrated the strong influence of their structural state on the development of high crystal lattice curvature and shear banding. The high crystal lattice curvature under a cyclic loading appears in the hydrogenated surface layers, where shear banding and microporosity develop and fatigue life is greatly reduced. High crystal lattice curvature in surface layer of Ti samples produced by ultrasonic processing determines the fourfold increase of Ti fatigue life. The translation-rotation deformation against developed grain boundary sliding in high-purity A999 Al polycrystals under creep and in A999 Al foils glued on commercial A7 Al plates under alternate bending was studied. The stage of steady-state creep provides intragranular sliding in the material mainly by dislocation mechanisms. The stage of tertiary creep causes multiscale fragmentation, non-crystallographic sliding, and fracture. Under alternate bending, the Al foils are involved in rotations by dislocation mechanisms only up to a strain of ~50%, and as they become highly corrugated, shear bands propagate in them. The observed shear banding provides the generation of elastoplastic rotations in zones of high lattice curvature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hirth JP, Lothe J. Theory of dislocation. 2nd ed. New York: Wiley; 1981.

    MATH  Google Scholar 

  2. Meyers MA, Chawla KK. Mechanical behaviour of materials. Upper Saddle River: Prentice Hall; 1999.

    MATH  Google Scholar 

  3. Courtney TR. Mechanical behaviour of materials. New York: МсGraw-Hill; 2000.

    Google Scholar 

  4. Cahn RW. The coming of materials science. Amsterdam: Elsevier; 2001.

    Google Scholar 

  5. Kröner E. Gauge field theories of defects in solids. Stuttgart: Max-Planck Institute; 1982.

    Google Scholar 

  6. Kadič A, Edelen DGB. A gauge theory of dislocations and Disclinations, Lecture notes in physics. Heidelberg: Springer-Verlag; 1983.

    Book  MATH  Google Scholar 

  7. Edelen DGB, Lagoudas DC. Gauge theory and defects in solids. Amsterdam: North-Holland; 1988.

    MATH  Google Scholar 

  8. Nabarro FRN. Report of a conference on the strength of solids. London: The Physical Society; 1948.

    Google Scholar 

  9. Herring C. Diffusional viscosity of a polycrystalline solid. J Appl Phys. 1950;21(5):437–45.

    Article  Google Scholar 

  10. Coble RL. A model for boundary diffusion controlled creep in poly crystalline materials. J Appl Phys. 1963;34(6):1679–82.

    Article  Google Scholar 

  11. Panin VE, Egorushkin VE, Panin AV. Nonlinear wave processes in a deformable solid as a multiscale hierarchically organized system. Physics-Uspekhi. 2012;55(12):1260–7.

    Article  Google Scholar 

  12. Panin VE, Egorushkin VE. Basic physical Mesomechanics of plastic deformation and fracture of solids as hierarchically organized nonlinear systems. Phys Mesomech. 2015;18(4):377–90.

    Article  Google Scholar 

  13. Panin VE, Egorushkin VE, Panin AV, Chernyavskii AG. Plastic distortion as a fundamental mechanism in nonlinear Mesomechanics of plastic deformation and fracture. Phys Mesomech. 2016;19(3):255–68.

    Article  Google Scholar 

  14. Matsunaga T, Kameyama T, Ueda S, Sato E. Grain boundary sliding during ambient-temperature creep in hexagonal close-packed metals. Philos Mag. 2010;90(30):4041–54.

    Article  Google Scholar 

  15. Ashby MF, Jones DRH. Engineering materials 1: an introduction to properties, applications and design. 3rd ed. Oxford: Butterworth-Heinemann; 2005.

    Google Scholar 

  16. Ashby MF, Jones DRH. Engineering materials 2: an introduction to microstructures, processing and design. 3rd ed. Oxford: Butterworth-Heinemann; 2005.

    Google Scholar 

  17. Sauzay M, Kubin LP. Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog Mater Sci. 2011;56(6):725–84.

    Article  Google Scholar 

  18. Kassner ME. Fundamentals of creep in metals and alloys. 2nd ed. Amsterdam: Elsevier; 2009.

    Google Scholar 

  19. Rusinko A, Rusinko K. Plasticity and creep of metals. New York: Springer; 2011.

    Book  MATH  Google Scholar 

  20. Gifkins RC. Grain-boundary sliding and its accommodation during creep and superplasticity. Metallurg Mater Trans. 1976;7A(8):1225–32.

    Article  Google Scholar 

  21. Pham MS, Soltnthaler C, Janssens KGF, Holdsworth SR. Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel. Mater Sci Eng A. 2011;528:3261–9.

    Article  Google Scholar 

  22. Pham MS, Holdsworth SR, Janssens KGF, Mazza E. Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modeling. Int J Plast. 2013;47:143–64.

    Article  Google Scholar 

  23. Panin VE, Egorushkin VE, Elsukova TF. Physical Mesomechanics of grain boundary sliding in a deformable Polycrystal. Phys Mesomech. 2013;16(1):1–8.

    Article  Google Scholar 

  24. Lohmiller J, Grewer M, Braun C, Kobler A, Kübel C, Schüler K, Honkimäki V, Hahn H, Kraft O, Birringer R, Gruber PA. Untangling dislocation and grain boundary mediated plasticity in nanocrystalline nickel. Acta Mater. 2014;65:295–307.

    Article  Google Scholar 

  25. Wadsworth J, Ruano OA, Sherby OD. Denuded zones, diffusional creep, and grain boundary sliding. Metall Mater Trans A. 2002;33А:219–29.

    Article  Google Scholar 

  26. Tsvikler W. Titan and Titanlegierungen. Berlin: Springer-Verlag; 1974.

    Google Scholar 

  27. Collings EW. The physical metallurgy of titanium alloys. American Society for Metals: Geauga County; 1984.

    Google Scholar 

  28. Laine SJ, Knowles KM. {11−24} deformation twinning in commercial purity titanium at room temperature. Philos Mag. 2015;95(20):2153–66.

    Article  Google Scholar 

  29. Panin AV, Panin VE, Chernov IP, YuI P, Kazachenok MS, Son AA, Valiev RZ, Kopylov VI. Effect of surface condition of ultrafine-grained Ti and α-Fe on their deformation and mechanical properties. Phys Mesomech. 2001;4(6):79–86.

    Google Scholar 

  30. Burdett J. Chemical bonds: a dialog. New York/Chichester: Wiley; 1997.

    Google Scholar 

  31. Hagena OF, Knop G, Linker G. Physics and chemistry of finite system: from clusters to crystals. Amsterdam: Kluwer Academic Publisher; 1992.

    Google Scholar 

  32. Haberland H, Insepov Z, Moseler M. Molecular-dynamics simulations of thin-film growth by energetic cluster impact. Phys Rev B. 1995;51(16):11061–7.

    Article  Google Scholar 

  33. Barut A, Raczka R. Theory of group representations and applications. Singapore: World Scientific Publishing; 1986.

    Book  MATH  Google Scholar 

  34. Panin VE, Grinyaev YV, Egorushkin VE, Buchbinder LL, Kul’kov SN. Spectrum of excited states and rotational mechanical field in a deformed crystal. Sov Phys J. 1987;30(1):24–38.

    Article  Google Scholar 

  35. Onami M. Introduction to micromechanics. Moscow: Metallurgia; 1987.

    Google Scholar 

  36. Panin VE, Elsukova TF, Popkova YF. The role of curvature of the crystal structure in the formation of micropores and crack development under fatigue fracture of commercial titanium. Dokl Phys. 2013;58(11):472475.

    Article  Google Scholar 

  37. Panin VE, Egorushkin VE. Curvature solitons as generalized structural wave carriers of plastic deformation and fracture. Phys Mesomech. 2013;16(4):267–86.

    Article  Google Scholar 

  38. Hansen M, Anderko K. Constitution of binary alloys. New York: McGraw-Hill; 1958.

    Book  Google Scholar 

  39. Demidenko VS, Zaitsev NL, Menschikova TV, Skorentsev LF. Precursor of the virtual b-phase in the electronic structure of a nanocluster in α-titanium. Phys Mesomech. 2006;9(3–4):51–6.

    Google Scholar 

  40. Cherepanov GP. On the theory of thermal stresses in thin bonding layer. J Appl Phys. 1995;78(11):6826–32.

    Article  Google Scholar 

  41. Honeycombe RWC. The plastic deformation of metals. London: Edward Arnold Publ. Ltd; 1968.

    Google Scholar 

  42. Tyumentsev AN, Ditenberg IA, Korotaev AD, Denisov KI. Lattice curvature evolution in metal materials on Meso- and Nanostructural scales of plastic deformation. Phys Mesomech. 2013;16(4):319–34.

    Article  Google Scholar 

  43. Panin VE, editor. Physical Mesomechanics of heterogeneous media and computer-aided Design of Materials. Cambridge: Cambridge International Science Publishers; 1998.

    Google Scholar 

  44. Tekoğlu C, Hutchinson JW, Pardoen T. On localization and void coalescence as a precursor to ductile fracture. Philos Trans R Soc. 2015;A373:20140121.

    Article  Google Scholar 

  45. Dobatkin SV, Zrnik J, Matuzic I. Nanostructures by severe plastic deformation of steels: advantage and problems. Metallurgia. 2006;45:313–21.

    Google Scholar 

  46. Andrievski RA, Glezer AM. Strength of nanostructures. Physics-Uspekhi. 2009;52(4):315–34.

    Article  Google Scholar 

  47. Lins JFC, Sandim HRZ, Kestenbach HJ, Raabe D, Vecchio KS. A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater Sci Eng. 2007;A457:205–18.

    Article  Google Scholar 

  48. Tyson JJ. The Belousov-Zhabotinsky reaction (lecture notes in biomathem). Berlin: Springer; 1976.

    Book  Google Scholar 

  49. Myasnikov VP. A geometrical model of the defect structure of an elastoplastic continuous medium. J Appl Mech Tech Phys. 1999;40(2):331–40.

    Article  MathSciNet  Google Scholar 

  50. Guzev MA, Dmitriev AA. Bifurcational behavior of potential energy in a particle system. Phys Mesomech. 2013;16(4):287–93.

    Article  Google Scholar 

  51. Maslov VP. Undistinguishing statistics of objectively distinguishable objects: thermodynamics and superfluidity of classical gas. Mathematical Notes. 2013;94:722–813.

    Article  MathSciNet  MATH  Google Scholar 

  52. Maslov VP. Mathematical aspects of weakly nonideal Bose and Fermi gases on a crystal base. Functional Analysis and Its Applications. 2003;37(2):16–27.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor E. Panin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Panin, V.E., Egorushkin, V.E., Elsukova, T.F., Surikova, N.S., Pochivalov, Y.I., Panin, A.V. (2019). Multiscale Translation-Rotation Plastic Flow in Polycrystals. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_77

Download citation

Publish with us

Policies and ethics