Skip to main content

Crack Paths in Graded and Layered Structures

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 4429 Accesses

Abstract

This chapter reviews the prediction of crack paths in materials with graded, and/or layered, composition, microstructure, and/or properties. The relevant applications span a wide variety of technologies where structural integrity is important and includes composites, layered materials, coatings, and joints. For most cases, the prediction of failure requires a priori knowledge of the crack path. In many cases, the crack path may be sufficiently defined by considering just crack kinking, that is, a small or infinitesimal increment of crack deviation from its plane. For other cases, the full crack path needs to be determined, something usually done with remeshing techniques in numerical simulation. In linear elastic systems, the residual stress that arises from the coefficient of thermal expansion mismatch between constituents generally dominates the behavior, but not if the elastic mismatch is very large or if there are big toughness mismatches. For linear elastic systems where plasticity occurs, but small-scale yielding still applies, the crack is usually drawn toward the softer material which also is generally tougher. For all cases, if the crack stress fields from all the sources are accurately defined, and materials properties known, it is possible to predict the crack path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozturk M, Erdogan F. Antiplane shear crack problem in bonded materials with a graded interfacial zone. Int J Eng Sci. 1993;31:1641–57.

    Article  MATH  Google Scholar 

  2. Kaya AC, Nied HF. Interface fracture analysis of bonded ceramic layers using enriched finite elements. In: Ceramic coatings, vol. 44. New York: ASME; 1993. p. 47–71.

    Google Scholar 

  3. Erdogan F, Chen YF. Interfacial cracking of FGM/metal bonds. In: Ceramic coatings, vol. 44. ASME; 1993. p. 29–37.

    Google Scholar 

  4. Jin Z-H, Noda N. Crack-tip singular fields in nonhomogeneous materials. J Appl Mech. 1994;61:738–40.

    Article  MATH  Google Scholar 

  5. Erdogan F, Wu BH. Analysis of FGM specimens for fracture toughness testing. Functionally gradient materials. Ceram Trans. 1993;34:39–46.

    Google Scholar 

  6. Special Issue in Engineering fracture mechanics on Fracture of functionally graded materials. Paulino G, editor vol. 69, Issues 14–16:1519–1812; 2002.

    Google Scholar 

  7. Jin Z-H, Paulino GH. Transient thermal stress analysis of an edge crack in a functionally graded material. Int J Fract. 2001;107:73–98.

    Article  Google Scholar 

  8. Walters MC, Paulino GH, Dodds RH. Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading. Int J Solids Struct. 2004;41:1081–118.

    Article  MATH  Google Scholar 

  9. Shim D-J, Paulino GH, Dodds RH. Effect of material gradation on K-dominance of fracture specimens. Eng Fract Mech. 2006;73:643–8.

    Article  Google Scholar 

  10. Rousseau C-E, Tippur HV. Compositionally graded materials with cracks normal to the elastic gradient. Acta Mater. 2000;48:4021–33.

    Article  Google Scholar 

  11. Eischen JW. Fracture of nonhomogeneous naterials. Int J Fract. 1987;34:3–22.

    Google Scholar 

  12. Suresh S, Mortensen A. Fundamentals of functionally graded materials. London: IOM Communications Ltd.; 1998.

    Google Scholar 

  13. Lee Y-D, Erdogan F. Residual/thermal stresses in FGM and laminated thermal barrier coatings. Int J Fract. 1995;69:145–65.

    Article  Google Scholar 

  14. Finot F, Suresh S, Bull C, Sampath S. Curvature changes during thermal cycling of a compositionally graded Ni-Al2O3 multi-layered material. Mater Sci Eng A. 1996;205A:59–71.

    Article  Google Scholar 

  15. Paulino GH, Jin Z-H, Dodds RH Jr. Failure of functionally graded materials. In: Comprehensive structural integrity, vol. 2. New York: Elsevier; 2003. p. 607–44.

    Chapter  Google Scholar 

  16. Suresh S, Olsson M, Giannakopoulos AE, Padture NP, Jitcharoen J. Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces. Acta Mater. 1999;47(14):3915–26.

    Article  Google Scholar 

  17. Jitcharoen J, Padture N, Giannakopoulos A, Suresh S. Hertzian-crack suppression in ceramics with elastic-modulus graded surfaces. J Am Ceram Soc. 1998;81:2301–2308.

    Article  Google Scholar 

  18. Cotterell B, Rice JR. Slightly curved or kinked cracks. Int J Fract. 1980;16:155–69.

    Article  Google Scholar 

  19. Erdogan F, Sih GC. On the crack extension in plates under plane loading and transverse shear. J Basic Eng. 1963;85:519–27.

    Article  Google Scholar 

  20. Kim J-H, Paulino GH. Simulation of crack propagation in functionally graded materials under mixed-mode and non-proportional loading. Int J Mech Mater Des. 2004;1:63–94.

    Article  Google Scholar 

  21. Williamson RL, Rabin BH, Drake JT. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 1. Model description and geometrical effects. J Appl Phys. 1993;74(2):1310.

    Article  Google Scholar 

  22. Drake JT, Williamson RL, Rabin BH. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part 2. Interface optimization for residual stress reduction. J Appl Phys. 1993;74(2):1321.

    Article  Google Scholar 

  23. Teraki J, Hirano T, Wakashima K. An elastic-plastic analysis of thermal stresses in a FGM plate under cyclic thermal load. Ceram Trans. 1994;34:67.

    Google Scholar 

  24. Kudesia R, Stangle GC. Thermomechanical response modeling in the design of FGM-joined ceramic-metal composites. Int J Self-Propag High-Temp Synth. 1994;3(1):59–78.

    Google Scholar 

  25. Chapa J, Reimanis IE. Modeling of thermal stresses of a graded Cu/W joint. J Nucl Mater. 2002;303:131–6.

    Article  Google Scholar 

  26. Rabin BH, Williamson RL. Design and fabrication of ceramic-metal gradient materials. In: Ravi VA, Srivatsan TS, Moore JJ, editors. Processing and fabrication of advanced materials III. Warrendale: The Minerals, Metals and Materials Society; 1994. p. 145.

    Google Scholar 

  27. Case M, Kokini K. Initiation of surface and interface edge cracks in functionally graded ceramic thermal carrier coatings. Trans ASME J Eng Mater Tech. 1997;11(2):148–152.

    Google Scholar 

  28. Erdogan F. Fracture mechanics of functionally graded materials. Compos Eng. 1995;5(7):753–70.

    Article  Google Scholar 

  29. Evans AG. Thermal barrier coatings workshop summary, from thermal barrier coatings workshop, vol. 19. Irsee. http://www.ehis.navy.mil/confsum/conf98-2.htm; 1998.

  30. Gaudette F, Suresh S, Evans AG, Dehm G, Ruhle M. The influence of chromium addition on the toughness of γ-Ni/α-Al2O3 interfaces. Acta Mater. 1997;45(9):3503–13.

    Article  Google Scholar 

  31. Chapa-Cabrera J, Reimanis IE. Effects of residual stress and geometry on crack kink angles in graded composites. Eng Fract Mech. 2002;69:1667–78.

    Article  Google Scholar 

  32. Bao G, Cai H. Delamination cracking in functionally graded coating/metal substrate systems. Acta Mater. 1997;45:1055–66.

    Article  Google Scholar 

  33. Hutchinson JW, Suo Z. Mixed-mode cracking in layered materials. Adv Appl Mech. 1992;29:63–191.

    Article  MATH  Google Scholar 

  34. Anderson TL. Fracture mechanics, fundamentals and applications. Boca Raton: CRC Press; 1991. p. 685–92.

    Google Scholar 

  35. Winter AN, Corff BA, Reimanis IE, Rabin BH. Fabrication of graded nickel-alumina composites with a thermal-behavior-matching process. J Am Ceram Soc. 2000;83(9):2147–54.

    Article  Google Scholar 

  36. Gu P, Asaro R. Cracks in functionally graded materials. Int J Solids Struct. 1997;34(1):1–17.

    Article  MATH  Google Scholar 

  37. Becker TL Jr, Cannon RM, Ritchie RO. Statistical fracture modeling: crack path and fracture criteria with application to homogeneous and functionally graded materials. Eng Fract Mech. 2002;69:1521–55.

    Article  Google Scholar 

  38. Becker TL Jr, Cannon RM, Ritchie RO. Finite crack kinking and T-stresses in functionally graded materials. Int J Solids Struct. 2001;38:5545–63.

    Article  MATH  Google Scholar 

  39. ElHadek MA, Tippur HV. Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams. Int J Solids Struct. 2003;40:1885–906.

    Article  Google Scholar 

  40. Paulino GH, Kim J-H. A new approach to compute T-stress in functionally graded materials by means of the interaction integral method. Eng Fract Mech. 2004;71:1907–50.

    Article  Google Scholar 

  41. Fleck NA, Hutchinson JW, Suo Z. Crack path selection in a brittle adhesive layer. Int J Solids Struct. 1991;27(13):1683–703.

    Article  Google Scholar 

  42. Chen B, Dillard DA. The effect of the T-stress on crack path selection in adhesively bonded joints. Int J Adhes Adhes. 2001;21:357–68.

    Article  Google Scholar 

  43. Betegon C, Hancock JW. Two-parameter characterization of elastic-plastic crack tip fields. Trans ASME J Appl Mech. 1991;58:104–10.

    Article  Google Scholar 

  44. Giannakopoullos AE, M. Olsson M. Influence of the nonsingular stress terms on small-scale supercritical transformation toughness. J Am Ceram Soc. 1992;75(10):2761–4.

    Article  Google Scholar 

  45. Fett T. Friction-induced bridging effects caused by the T-stress. Eng Fract Mech. 1998;59(5):599–606.

    Article  Google Scholar 

  46. Fett T, Guin JP, Wiederhorn SM. Interpretation of effects at the static fatigue limit of soda-lime-silicate glass. Eng Fract Mech. 2005;72:2774–91.

    Article  Google Scholar 

  47. Ayatollahi MR, Aliha MRM. On the use of Brazilian disc specimen for calculating mixed mode fracture toughness of rock materials. Eng Fract Mech. 2008;75:4631–41.

    Article  Google Scholar 

  48. Wiederhorn SM, Dretzke A, Rodel J. Crack growth in soda-lime-silicate glass near the static fatigue limit. J Am Ceram Soc. 2007;85(9):2287–92.

    Article  Google Scholar 

  49. Cotterell TB. Notes on the paths and stability of cracks. Int J Fract Mech. 1966;2(3):526–33.

    Article  Google Scholar 

  50. Tong J. T-stress and its implications for crack growth. Eng Fract Mech. 2002;69:1325–37.

    Article  Google Scholar 

  51. Marur PR, Tippur HV. Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. Int J Solids Struct. 2000;37:5353–70.

    Article  MATH  Google Scholar 

  52. Cotterell TB. On fracture path stability in the compact tension test. Int J Fract Mech. 1970;6(2):189–92.

    Article  Google Scholar 

  53. Pook LP. Crack paths. Southhamton: WIT Press; 2002.

    MATH  Google Scholar 

  54. Melin S. The influence of the T-stress on the directional stability of cracks. Int J Fract. 2002;114:259–65.

    Article  Google Scholar 

  55. Cao HC, Thouless MD, Evans AG. Residual stresses and cracking in brittle solids bonded with a thin ductile layer. Acta Metall. 1988;36(8):2037–46.

    Article  Google Scholar 

  56. Hutchinson JW, Mear ME, Rice JR. Crack paralleling an interface between dissimilar materials. J Appl Mech. 1987;54:828–32.

    Article  Google Scholar 

  57. Ritchie RO, Cannon RM, Dalgleish BK, Dauskardt RH, McNaney JM. Mechanics and mechanisms of crack growth at or near ceramic-metal interfaces: interface engineering strategies for promoting toughness. Mater Sci Eng. 1993;A166:221–35.

    Article  Google Scholar 

  58. McNaney JM, Cannon RM, Ritchie RO. Near interface crack trajectories in metal-ceramic layered structures. Int J Fract. 1994;66(3):227–40.

    Article  Google Scholar 

  59. Tilbrook MT, Reimanis IE, Hoffman M. Finite element simulations of cracks near interfaces: effects of thermal, elastic and plastic mismatch. J Am Ceram Soc. 2005;88(10):2833–8.

    Article  Google Scholar 

  60. Tilbrook MT, Reimanis IE, Rozenburg K, Hoffman M. Effects of plastic yielding on crack propagation near ductile/brittle interfaces. Acta Mater. 2005;53:3935–49.

    Article  Google Scholar 

  61. Tvergaard V. Theoretical investigation of the effect of plasticity on crack crowth along a functionally graded region between dissimilar elastic-plastic solids. Eng Fract Mech. 2002;69:1635–45.

    Article  Google Scholar 

  62. Kolednik O. The yield stress gradient effect in inhomogeneous materials. Int J Solids Struct. 2000;37:781–808.

    Article  MATH  Google Scholar 

  63. Kim AS, Suresh S, Shih CF. Plasticity effects on fracture normal to interfaces with homogeneous and graded compositions. Int J Solids Struct. 1997;34:3415–32.

    Article  MATH  Google Scholar 

  64. Charalambides PG, Mataga PA, McMeeking RM, Evans AG. Steady-state mechanics of a growing crack paralleling an elastically constrained thin ductile layer. Appl Mech Rev. 1990;43(5):IIS267–70.

    Article  Google Scholar 

  65. Zin Z-H. Effect of material non-homogeneities on the HRR dominance. Mech Res Commun. 2004;31:203–11.

    Article  Google Scholar 

  66. Rashid MM, Tvergaard V. On the path of a crack near a graded interface under large scale yielding. Int J Solids Struct. 2003;40:2819–31.

    Article  MATH  Google Scholar 

  67. Wang Z, Nakamura T. Simulations of crack propagation in elastic-plastic graded materials. Mech Mater. 2004;36:601–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivar Reimanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Reimanis, I. (2019). Crack Paths in Graded and Layered Structures. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_67

Download citation

Publish with us

Policies and ethics