Skip to main content

Fiber Reinforced Ceramic Matrix Composites: A Probabilistic Micromechanics-Based Approach

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 4441 Accesses

Abstract

Being damage tolerant, the CMCs exhibit nonlinear deformations as a result of cracks that form in the matrix, in the interfaces, and in the fibers. The sequence of cracking modes displays several features that depend on the arrangement of fibers, the microstructure, and the respective properties of constituents. Being ceramic materials, the constituents are highly sensitive to inherent microstructural flaws generated during processing. The flaw populations govern matrix cracking and fiber failures, so that strengths of constituents exhibit statistical distributions. A bottom-up multiscale approach based on micromechanics must account for the contribution of inherent fracture-inducing flaws, variability of constituent strengths, and associated size effects.

The chapter deals with modeling of the stochastic processes of multiple fracture of the matrix and the fibers that govern damage and failure on fiber-reinforced ceramic matrix composites. The models are based on probabilistic approaches to brittle fracture, including the Weibull phenomenological model and the physics-based elemental strength model that considers the flaws as physical entities. The probabilistic models that are discussed permit determination of stresses at crack initiation from microstructural flaws and resulting crack pattern. Applications to the prediction of tensile behavior of unidirectional or woven composites are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamon J. Brittle fracture and damage of brittle materials and composites. London/Oxford: ISTE Press Ltd/Elsevier Ltd; 2016.

    Google Scholar 

  2. Lamon J, Thommeret B, Percevault C. Probabilistic-statistical approach to the matrix damage and stress-strain behavior of 2-D woven SiC/SiC ceramic matrix composites (CMCs). J Eur Ceram Soc. 1998;18:1797–808.

    Article  Google Scholar 

  3. Guillaumat L, Lamon J. Probabilistic-statistical simulation of the nonlinear mechanical behavior of a woven SiC/SiC composite. Compos Sci Technol. 1996;56:803–8.

    Article  Google Scholar 

  4. Pailler F, Lamon J. Micromechanics-based model of fatigue oxidation behaviour for SiC/SiC composites. Compos Sci Technol. 2005;65:369–74.

    Article  Google Scholar 

  5. Lissart N, Lamon J. Statistical analysis of failure of SiC fibres in the presence of bimodal flaw populations. J Mater Sci. 1997;32:6107–17.

    Article  Google Scholar 

  6. Bertrand S, Forio P, Pailler R, Lamon J. Hi-Nicalon/SiC minicomposites with (PyC/SiC)n nanoscale-multilayered interphases. J Am Ceram Soc. 1999;82(9):2465–73.

    Article  Google Scholar 

  7. Weibull W. A statistical theory of the strength of materials, Ingeniorsvetenkapsakodemiens hadlinger NR 151. Stockholm: Generalstabens Litografiska Anstaltz Förlag; 1939.

    Google Scholar 

  8. Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18:293–7.

    MATH  Google Scholar 

  9. De Jayatilaka S, Trustrum K. Statistical approach to brittle fracture. J Mater Sci. 1977;10:1426–30.

    Article  Google Scholar 

  10. De Jayatilaka S, Trustrum K. Application of a statistical method to brittle fracture in biaxial loading systems. J Mater Sci. 1977;12:2043–8.

    Article  Google Scholar 

  11. Poloniecki JD, Wilshaw TR. Determination of Surface Crack Size Densities in Glass. Nature. 1971;229:226.

    Article  Google Scholar 

  12. Foray G, Descamps-Mandine A, R’Mili M, Lamon J. Statistical distributions for glass fibers: correlation between bundle test and AFM-derived flaw size density functions. Acta Mater. 2012;60:3711–8.

    Article  Google Scholar 

  13. Hild F, Marquis D. A statistical approach to the rupture of brittle materials. Eur J Mech A Solids. 1992;11(6):753–65.

    MATH  Google Scholar 

  14. Batdorf SB, Crose JG. A statistical theory for the fracture of brittle structures subjected to nonuniform polyaxial stresses. J Appl Mech Trans ASME. 1974;41:459–64.

    Article  Google Scholar 

  15. Argon AS, McClintock FA. Mechanical behavior of materials. Reading: Addison-Wesley; 1966.

    Google Scholar 

  16. Argon S. Surface cracks on glass. Proc R Soc London Ser A. 1959;250:482–92.

    Article  Google Scholar 

  17. Evans AG, Langdon TG. Structural ceramics. Prog Mater Sci. 1976;21:320–31.

    Article  Google Scholar 

  18. Evans G. A general approach for the statistical analysis of multiaxial fracture. J Am Ceram Soc. 1978;61(7–8):281–376.

    Google Scholar 

  19. Lamon J. Ceramics reliability: statistical analysis of multiaxial failure using the Weibull approach and the multiaxial elemental strength model. J Am Ceram Soc. 1990;73(8):2204–12.

    Article  Google Scholar 

  20. Lamon J, Evans AG. Structural analysis of bending strengths for brittle solids: a multiaxial fracture problem. J Am Ceram Soc. 1983;66(3):177–82.

    Article  Google Scholar 

  21. Lamon J. Statistical approaches to failure for ceramic reliability assessment. J Am Ceram Soc. 1988;71(2):106–12.

    Article  Google Scholar 

  22. Duffy SF, Janosik LL, Wereszczak AA, Schenk B, Suzuki A, Lamon J, Thomas DJ. Chapter 25, Life prediction of structural components. In: Van Roode M, Ferber MK, Richerson DW, editors. Ceramic gas turbine component development and characterization, vol. II. New York: ASME Press; 2003. p. 553–606.

    Google Scholar 

  23. Peirce FT. Mechanical properties of boron fibers. J Text Inst Trans. 1926;17:355.

    Google Scholar 

  24. Epstein B. Application of the theory of extreme values in fracture problems. Am Stat Assoc J. 1948;43(243):403–12.

    Article  Google Scholar 

  25. Lu C, Danzer R, Fischer FD. Phys Rev E. 2002;65:067102:1.

    Google Scholar 

  26. R’Mili M, Godin N, Lamon J. Flaw strength distributions and statistical parameters for ceramic fibers: the normal distribution. Phys Rev E. 2012;85(5):1106–12.

    Google Scholar 

  27. Lamon J, Lissart N, Rechiniac C, Roach DM, Jouin JM. Micromechanical and statistical approach to the behavior of CMCs. In: Composites and advanced ceramics, Proceedings of the 17th annual conference and exposition, Cocoa Beach, Florida (USA), 10–15 janvier 1993, The American Ceramic Society, Ceramic Engineering and Science Proceedings, Sept–Oct, p. 1115–24. 1993.

    Google Scholar 

  28. Chi Z, Wei Chou T, Shen G. Determination of single fiber strength distribution from fiber bundle testing. J Mater Sci. 1984;19:3319–24.

    Article  Google Scholar 

  29. Lissart N, Lamon J. Evaluation des propriétés de monofilaments à partir d’essais de traction sur mèches. In: Favre JP, Vautrin A, editors. Comptes-rendus des 9° Journées Nationales sur les Composites (JNC9), vol. 2. AMAC. Paris, France; 1994. p. 589–98.

    Google Scholar 

  30. R’Mili M, Murat M. Caractérisation des fibres par amélioration de l’essai sur mèche avec mesure directe de la déformation. C R Acad Sci. 1997;324(6):355–64.

    Google Scholar 

  31. R’Mili M, Bouchaour T, Merle P. Estimation of Weibull parameters from loose bundle tests. Compos Sci Technol. 1996;56:831–4.

    Article  Google Scholar 

  32. (ENV1007-5). Advanced technical ceramic-ceramic composites – methods of test for reinforcements – Part 5: Determination of distribution of tensile strength and tensile strain to failure of filaments within a multifilament tow at ambient temperature. European Committee for Standardization, CEN TC 184 SC1, Brussel; 1997.

    Google Scholar 

  33. Lamon J, Mazerat S, R’Mili M. Reinforcement of ceramic matrix composites: properties of SiC-based filaments and tows. In: Bansal NP, Lamon J, editors. Ceramic matrix composites: materials, modeling and applications. Hoboken: Wiley; 2014. p. 3–26. ISBN 978-1-118-23116-6.

    Google Scholar 

  34. Eckel J, Bradt RC. Statistical analysis of failure of SiC fibres in the presence of bimodal flaw populations. J Am Ceram Soc. 1989;72(3):455–8.

    Article  Google Scholar 

  35. Goda K, Fukunaga H. The evaluation of the strength distribution of silicon carbide andalumina fibres by a multi-modal Weibull distribution. J Mater Sci. 1986;21:4475–80.

    Article  Google Scholar 

  36. Lamon J. Stochastic models of fragmentation of brittle fibers or matrix in composites. Compos Sci Technol. 2010;70:743–51.

    Article  Google Scholar 

  37. Lamon J. Stochastic approach to multiple cracking in composite systems based on the extreme value theory. Compos Sci Technol. 2009;69:1607–14.

    Article  Google Scholar 

  38. Hui C-Y, Phoenix SL, Ibnabdeljalil M, Smith RL. An exact closed form solution for fragmentation of Weibull fibers in single filament composite with applications to fiber-reinforced ceramics. J Mech Phys Solids. 1995;43(10):1551–85.

    Article  Google Scholar 

  39. Baxevanakis C, Jeulin D, Valentin D. Fracture statistics of single-fiber composite specimens. Compos Sci Technol. 1993;48:47–56.

    Article  Google Scholar 

  40. Wagner HD. Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials. J Polym Sci B Polym Phys. 1989;27:115–49.

    Article  Google Scholar 

  41. Okabe T, Takeda N, Komotori J, Shimizu M, Curtin WA. A new fracture mechanics model for multiple matrix cracks of SiC reinforced brittle-matrix composites. Acta Mater. 1999;47(17):4299–309.

    Article  Google Scholar 

  42. Rousset G, Lamon J, Martin E. In situ fiber strength determination in metal matrix composites. Compos Sci Technol. 2009;69(15–16):2580–6.

    Article  Google Scholar 

  43. Glushko V, Kovalenko V, Mileiko S, Tvardovsky V. Evaluation of fiber strength characteristics using fiber fragmentation test. In: Mileiko S, Tvarkovsky V, editors. Composites: fracture mechanics and technology. Chernogolovska: Russian Composite Society; 1992. p. 66–76.

    Google Scholar 

  44. Pailler F, Lamon J. Micromechanics-based model of fatigue/oxidation for ceramic matrix composites. Compos Sci Technol. 2005;65:369–74.

    Article  Google Scholar 

  45. Lamon J. A micromechanics-based approach to the mechanical behavior of brittle-matrix composites. Compos Sci Technol. 2001;61:2259–72.

    Article  Google Scholar 

  46. Calard V, Lamon J. Failure of fibres bundles. Compos Sci Technol. 2004;64:701–10.

    Article  Google Scholar 

  47. Daniels HE. The statistical theory of the strength of bundles of threads I. Proc R Soc. 1945;A183:405–35.

    MathSciNet  MATH  Google Scholar 

  48. Coleman BD. On the strength of classical fibers and fibers bundle. J Mech Phys Solids. 1958;7:60–70.

    Article  MathSciNet  Google Scholar 

  49. Phoenix SL, Taylor HM. The asymptotic strength distribution of a general fiber bundle. Adv Appl Probab. 1973;5:200–16.

    Article  MathSciNet  Google Scholar 

  50. Phoenix SL. Probabilistic strength analysis of fiber bundles structures. Fiber Sci Technol. 1974;7:15–31.

    Article  Google Scholar 

  51. McCartney LN, Smith RL. Statistical theory of the strength of fiber bundles. ASME J Appl Mech. 1983;105:601–8.

    Article  Google Scholar 

  52. Gurvich M, Pipes R. Strength size effect of laminated composites. Compos Sci Technol. 1995;55:93–105.

    Article  Google Scholar 

  53. Curtin WA. Stress-strain behavior of brittle matrix composites. In: Kelly A, Zweben C, editors. Comprehensive composites materials, Elsevier Science Ltd. Great Britain, vol. 4; 2000. p. 47–76.

    Google Scholar 

  54. Curtin WA. Ultimate strengths of fibre-reinforced ceramics and metals. Composites. 1993;24(2):98–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Lamon .

Editor information

Editors and Affiliations

Appendix

Appendix

Stress on fiber in the presence of fragmented matrix:

  • In the vicinity of interfacial matrix cracks: u + lo ≤ x < ld

    $$ {\sigma}_m(x)={\sigma}_m\frac{x-u-{l}_o}{l_d-{l}_o} $$
    (53)
    $$ {\sigma}_f(x)={\sigma}_f\left( 1+a-a\frac{x-u-{l}_o}{l_d-{l}_o}\right) $$
    (54)
  • In the rest of fragment: u + ld < x < 2 li − (u + ld)

    $$ {\sigma}_m=\frac{\sigma }{V_m}\frac{a}{1+a}+{\sigma}_m^{th} $$
    (55)
    $$ {\sigma}_f=\frac{\sigma }{V_f}\frac{1}{1+a}+{\sigma}_f^{th} $$
    (56)

where σm and σf are, respectively, the stresses operating on the fiber and the matrix; u, ld, and lo are defined in Fig. 8; 2li is length of fragment i; σ is the remote stress applied to the specimen; Vf and Vm are the volume fractions of fiber and matrix, respectively; \( a=\frac{E_m{V}_m}{E_f{V}_f} \) is the load sharing parameter; Ef and Em are fiber and matrix Young’s moduli; and \( {\sigma}_m^{th} \) and \( {\sigma}_f^{th} \) are the residual stresses, respectively, in the matrix and in the fiber.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lamon, J. (2019). Fiber Reinforced Ceramic Matrix Composites: A Probabilistic Micromechanics-Based Approach. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_64

Download citation

Publish with us

Policies and ethics