Skip to main content

Surface/Interface Stress and Thin Film Stress

  • Reference work entry
  • First Online:
  • 4591 Accesses

Abstract

Thin film stress is critical for the reliability and electronic/optoelectronic properties of thin film devices. In this chapter, we systematically discussed the effects of surface and interface stresses on the film stress development during growth of polycrystalline films at the initial and final growth stage. We demonstrate that surface stress plays an important role at the initial stage of film growth (island growth stage), and conventional stress analysis technology such as wafer curveture experiments may not be applicable at this stage. At the late stage of film growth, we also show that adatom insertion into the grain boundaries is the primary mechanism of compressive stress development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Freund LB, Suresh S. Thin film materials: stress, defect formation and surface evolution. Cambridge: Cambridge University Press; 2003.

    MATH  Google Scholar 

  2. Stoney GG. The tension of metallic films deposited by electrolysis. Proc R Soc Lond A Math Phys Eng Sci. 1909;82(553)

    Article  Google Scholar 

  3. Koch R, Hu D, Das AK. Compressive stress in polycrystalline Volmer-weber films. Phys Rev Lett. 2005;94(14):146101.

    Article  Google Scholar 

  4. Hoffman R. Stresses in thin films: the relevance of grain boundaries and impurities. Thin Solid Films. 1976;34(2):185–90.

    Article  Google Scholar 

  5. Nix WD, Clemens BM. Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films. J Mater Res. 1999;14(08):3467–73.

    Article  Google Scholar 

  6. Freund LB, Chason E. Model for stress generated upon contact of neighboring islands on the surface of a substrate. J Appl Phys. 2001;89(9):4866.

    Article  Google Scholar 

  7. Cammarata RC, Trimble TM, Srolovitz DJ. Surface stress model for intrinsic stresses in thin films. J Mater Res. 2000;15(11):2468–74.

    Article  Google Scholar 

  8. Friesen C, Thompson CV. Reversible stress relaxation during Precoalescence interruptions of Volmer-Weber thin film growth. Phys Rev Lett. 2002;89(12):126103.

    Article  Google Scholar 

  9. Friesen C, Thompson CV. Correlation of stress and atomic-scale surface roughness evolution during intermittent Homoepitaxial growth of (111)-oriented Ag and Cu. Phys Rev Lett. 2004;93(5):056104.

    Article  Google Scholar 

  10. Pao C-W, Srolovitz D, Thompson C. Effects of surface defects on surface stress of Cu(001) and Cu(111). Phys Rev B. 2006;74(15):1–8.

    Article  Google Scholar 

  11. Chason E, Sheldon BW, Freund LB, Floro JA, Hearne SJ. Origin of compressive residual stress in polycrystalline thin films. Phys Rev Lett. 2002;88(15):156103.

    Article  Google Scholar 

  12. Suzuki A, Mishin Y. Atomistic modeling of point defects and diffusion in copper grain boundaries. Interface Sci. 2003a;11(1):131–48.

    Article  Google Scholar 

  13. Guduru P, Chason E, Freund L. Mechanics of compressive stress evolution during thin film growth. J Mech Phys Solids. 2003;51(11):2127–48.

    Article  MathSciNet  Google Scholar 

  14. Sheldon BW, Ditkowski A, Beresford R, Chason E, Rankin J. Intrinsic compressive stress in polycrystalline films with negligible grain boundary diffusion. J Appl Phys. 2003;94(2):948.

    Article  Google Scholar 

  15. Pao C-W, Foiles S, Webb E, Srolovitz D, Floro J. Thin film compressive stresses due to Adatom insertion into grain boundaries. Phys Rev Lett. 2007;99(3):1–4.

    Article  Google Scholar 

  16. Pao C-W, Foiles S, Webb E, Srolovitz D, Floro J. Atomistic simulations of stress and microstructure evolution during polycrystalline Ni film growth. Phys Rev B. 2009;79(22):1–9.

    Article  Google Scholar 

  17. Pao C-W, Srolovitz D. Stress and morphology evolution during island growth. Phys Rev Lett. 2006a;96(18):1–4.

    Article  Google Scholar 

  18. Pao C-W, Srolovitz DJ. Atomistic simulation of stress evolution during island growth. J Mech Phys Solids. 2006b;54(12):2527–43.

    Article  Google Scholar 

  19. Baskes M. An atomistic study of solid/liquid interfaces in binary systems. JOM. 2004;56(4):45–8.

    Article  Google Scholar 

  20. Baskes MI. Many-body effects in fcc metals: a Lennard-Jones embedded-atom potential. Phys Rev Lett. 1999;83(13):2592–5.

    Article  Google Scholar 

  21. Baskes MI, Stan M. An atomistic study of solid/liquid interfaces and phase equilibrium in binary systems. Metall Mater Trans A. 2003;34(3):435–9.

    Article  Google Scholar 

  22. Srinivasan SG, Baskes MI. On the Lennard–Jones EAM potential. Proc R Soc Lond A Math Phys Eng Sci. 2004;460(2046):1649–72.

    Article  Google Scholar 

  23. Floro JA, Hearne SJ, Hunter JA, Kotula P, Chason E, Seel SC, Thompson CV. The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. J Appl Phys. 2001;89(9):4886.

    Article  Google Scholar 

  24. Ruud JA, Witvrouw A, Spaepen F. Bulk and interface stresses in silver-nickel multilayered thin films. J Appl Phys. 1993;74(4):2517.

    Article  Google Scholar 

  25. Gill SPA, Gao H, Ramaswamy V, Nix WD. Confined capillary stresses during the initial growth of thin films on amorphous substrates. J Appl Mech. 2002;69(4):425.

    Article  Google Scholar 

  26. Bhandari A, Sheldon BW, Hearne SJ. Competition between tensile and compressive stress creation during constrained thin film island coalescence. J Appl Phys. 2007;101(3):033528.

    Article  Google Scholar 

  27. Daw MS, Foiles SM, Baskes MI. The embedded-atom method: a review of theory and applications. Mater Sci Rep. 1993;9(7):251–310.

    Article  Google Scholar 

  28. Foiles SM, Hoyt J. Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater. 2006;54(12):3351–7.

    Article  Google Scholar 

  29. Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58(17):11085–8.

    Article  Google Scholar 

  30. Ling WL, Bartelt NC, McCarty KF, Carter CB. Twin boundaries can be moved by step edges during film growth. Phys Rev Lett. 2005;95(16):166105.

    Article  Google Scholar 

  31. Spaepen F. Interfaces and stresses in thin films. Acta Mater. 2000;48(1):31–42.

    Article  Google Scholar 

  32. Zandbergen HW, Pao CW, Srolovitz DJ. Dislocation injection, reconstruction, and atomic transport on {001} Au terraces. Phys Rev Lett. 2007;98(3)

    Google Scholar 

  33. Sørensen MR, Mishin Y, Voter AF. Diffusion mechanisms in Cu grain boundaries. Phys Rev B. 2000;62(6):3658–73.

    Article  Google Scholar 

  34. Suzuki A, Mishin Y. Interaction of point defects with grain boundaries in fcc metals. Interface Sci. 2003b;11(4):425–37.

    Article  Google Scholar 

  35. Friesen C, Seel SC, Thompson CV. Reversible stress changes at all stages of Volmer–Weber film growth. J Appl Phys. 2004;95(3):1011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Pao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pao, CW. (2019). Surface/Interface Stress and Thin Film Stress. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_3

Download citation

Publish with us

Policies and ethics