Skip to main content

Simulation of Crack Propagation Under Mixed-Mode Loading

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

Engineering components frequently contain cracks, either as an unavoidable consequence of their manufacturing (for example, pores in sintering processes or machining flaws) or due to processes occurring in service (cyclic loads, corrosive attacks, wear, etc.). Since it is not possible to completely avoid the formation of cracks, engineering safety requires to ensure that cracks do not lead to failure of a structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, somewhat confusingly, the technique called “displacement correlation method” in [30] is termed “displacement extrapolation method” in [31].

  2. 2.

    It should be noted that n is perpendicular to the contour, not parallel to it as in standard contour integrals because the integration domain is actually a two-dimensional slice taken out of a three-dimensional surface integral.

References

  1. Rösler J, Harders H, Bäker M. Mechanical behaviour of engineering materials. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007.

    Google Scholar 

  2. Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng. 2004;61(13):2316–43.

    Article  MATH  Google Scholar 

  3. Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Comput Struct. 2010;88(23–24):1391–411.

    Article  Google Scholar 

  4. Meng C, Pollard DD. Modeling mixed-mode fracture propagation in 3D. In: 46th US Rock Mechanics/Geomechanics Symposium. Chicago: American Rock Mechanics Association; 2012.

    Google Scholar 

  5. Meng C, Maerten F, Pollard DD. Modeling mixed-mode fracture propagation in isotropic elastic three dimensional solid. Int J Fract. 2013;179(1–2):45–57.

    Article  Google Scholar 

  6. Spatschek R, Brener E, Karma A. Phase field modeling of crack propagation. Philos Mag. 2011;91(1):75–95.

    Article  Google Scholar 

  7. Rountree CL, Kalia RK, Lidorikis E, Nakano A, Van Brutzel L, Vashishta P. Atomistic aspects of crack propagation in brittle materials: multimillion atom molecular dynamics simulations. Annu Rev Mater Res. 2002;32(1):377–400.

    Article  Google Scholar 

  8. Kohlhoff S, Schmauder S. A new method for coupled elastic-atomistic modelling. In: Atomistic simulation of materials. Boston: Springer; 1989, p 411–8.

    Google Scholar 

  9. Kohlhoff S, Gumbsch P, Fischmeister HF. Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos Mag A. 1991;64(4):851–78.

    Article  Google Scholar 

  10. Gracie R, Belytschko T. Concurrently coupled atomistic and XFEM models for dislocations and cracks. Int J Numer Methods Eng. 2009;78(3):354–78.

    Article  MathSciNet  MATH  Google Scholar 

  11. Buehler MJ, editor. Atomistic modeling of materials failure. Boston: Springer US; 2008.

    Google Scholar 

  12. Besson J. Continuum models of ductile fracture: a review. Int J Damage Mech. 2010;19(1):3–52.

    Article  Google Scholar 

  13. Kuna M. Numerische Beanspruchungsanalyse von Rissen. Wiesbaden: Vieweg+Teubner; 2008.

    Book  Google Scholar 

  14. Brocks W. FEM-Analysen von Rissproblemen bei nichtlinearem Materialverhalten. Geesthacht: GKSS; 2007.

    Google Scholar 

  15. Gross D, Seelig T. Fracture mechanics: with an introduction to micromechanics. Heidelberg: Springer Science & Business Media; 2011.

    Book  MATH  Google Scholar 

  16. Carter BJ, Wawrzynek P, Ingraffea AR. Automated 3-D crack growth simulation. Int J Numer Methods Eng. 2000;47(1–3):229–53.

    Article  MATH  Google Scholar 

  17. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng. 1999;46(1):131–50.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fries TP, Zilian A. A short course on the extended finite element method. Luxembourg: Luxembourg, CES University of; 2013.

    MATH  Google Scholar 

  19. Fries TP, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng. 2010;84(February):253–304.

    MathSciNet  MATH  Google Scholar 

  20. Belytschko T, Gracie R, Ventura G. A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng. 2009;17(4):043001.

    Article  Google Scholar 

  21. Duflot M. A study of the representation of cracks with level sets. Int J Numer Methods Eng. 2007;70(11):1261–302.

    Article  MathSciNet  MATH  Google Scholar 

  22. Stolarska M, Chopp DL, Moës N, Belytschko T. Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng. 2001;51(January 2000):943–60.

    Article  MATH  Google Scholar 

  23. Paris PC, Sih GC. Stress analysis of cracks. In: Fracture toughness testing and its applications. Philadelphia: ASTM International; 1965.

    Google Scholar 

  24. Barsoum RS. On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng. 1976;10(1):25–37.

    Article  MATH  Google Scholar 

  25. Krueger R. Virtual crack closure technique: history, approach, and applications. Appl Mech Rev. 2004;57(2):109.

    Article  Google Scholar 

  26. Banks-Sills L. Update: application of the finite element method to linear elastic fracture mechanics. Appl Mech Rev. 2010;63(2):020803.

    Article  Google Scholar 

  27. Cornell Fracture Group. Franc3D concepts & users guide. Ithaca: Cornell University; 2003.

    Google Scholar 

  28. Zencrack Zentech Int. Tool for 3D fracture mechanics simulation; 2012.

    Google Scholar 

  29. Loehnert S, Mueller-Hoeppe DS, Wriggers P. 3D corrected XFEM approach and extension to finite deformation theory. Int J Numer Methods Eng. 2011;86(4–5):431–52.

    Article  MathSciNet  MATH  Google Scholar 

  30. Chan SK, Tuba IS, Wilson WK. On the finite element method in linear fracture mechanics. Eng Fract Mech. 1970;2(1):1–17.

    Article  Google Scholar 

  31. Lim IL, Johnston IW, Choi SK. Comparison between various displacement-based stress intensity factor computation techniques. Int J Fract. 1992;58(3):193–210.

    Article  Google Scholar 

  32. Bäker M. Finite element crack propagation calculation using trial cracks. Comput Mater Sci. 2008;43(1):179–83.

    Article  Google Scholar 

  33. Moran B, Shih CF. Crack tip and associated domain integrals from momentum and energy balance. Eng Fract Mech. 1987;27(6):615–42.

    Article  Google Scholar 

  34. Shih CF, Moran B, Nakamura T. Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract. 1986;30(2):79–102.

    Google Scholar 

  35. Shih CF, Asaro RJ. Elastic-plastic analysis of cracks on bimaterial interfaces: part Ismall scale yielding. J Appl Mech. 1988;55(2):299–316.

    Article  Google Scholar 

  36. Dassault Systems. ABAQUS User’s manual and theory manual. 2014.

    Google Scholar 

  37. Simha NK, Fischer FD, Shan GX, Chen CR, Kolednik O. J-integral and crack driving force in elastic-plastic materials. J Mech Phys Solids. 2008;56(9):2876–95.

    Article  MathSciNet  MATH  Google Scholar 

  38. Steinmann P. Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int J Solids Struct. 2000;37(48):7371–91.

    Article  MATH  Google Scholar 

  39. Mueller R, Kolling S, Gross D. On configurational forces in the context of the finite element method. Int J Numer Methods Eng. 2002;53(7):1557–74.

    Article  MathSciNet  MATH  Google Scholar 

  40. Denzer R, Barth FJ, Steinmann P. Studies in elastic fracture mechanics based on the material force method. Int J Numer Methods Eng. 2003;58(12):1817–35.

    Article  MATH  Google Scholar 

  41. Okada H, Kawai H, Tokuda T, Fukui Y. Fully automated mixed mode crack propagation analyses based on tetrahedral finite element and VCCM (virtual crack closure-integral method). Int J Fatigue. 2013;50:33–9.

    Article  Google Scholar 

  42. Bouchard PO, Bay F, Chastel Y. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput Methods Appl Mech Eng. 2003;192(35–36):3887–908.

    Article  MATH  Google Scholar 

  43. Mróz KP, Mróz Z. On crack path evolution rules. Eng Fract Mech. 2010;77(11):1781–807.

    Article  Google Scholar 

  44. Chang J, Xu JQ, Mutoh Y. A general mixed-mode brittle fracture criterion for cracked materials. Eng Fract Mech. 2006;73:1249–63.

    Article  Google Scholar 

  45. Cotterell B, Rice JR. Slightly curved or kinked cracks. Int J Fract. 1980;16(2):155–69.

    Article  Google Scholar 

  46. Hayashi K, Nemat-Nasser S. Energy-release rate and crack kinking under combined loading. J Appl Mech. 1981;48(3):520.

    Article  MATH  Google Scholar 

  47. He MY, Hutchinson JW. Kinking of a crack out of an interface. J Appl Mech. 1989;56(2):270.

    Article  Google Scholar 

  48. Sutton MA, Deng X, Ma F, Newman JC Jr, James M. Development and application of a crack tip opening displacement-based mixed mode fracture criterion. Int J Solids Struct. 2000;37(26):3591–618.

    Article  MATH  Google Scholar 

  49. Scheider I, Brocks W. Cohesive elements for thin-walled structures. Comput Mater Sci. 2006;37(1–2):101–9.

    Article  Google Scholar 

  50. Scheider I. Cohesive model for crack propagation analyses of structures with elastic plastic material behavior: foundations and implementation. Geesthacht: GKSS Research Center; 2001.

    Google Scholar 

  51. Xie D, Waas AM. Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech. 2006;73(13):1783–96.

    Article  Google Scholar 

  52. Schwalbe KH, Cornec A. Modeling crack growth using local process zones. Geesthacht: GKSS Research Centre; 1994.

    Google Scholar 

  53. Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech. 1987;54(3):525.

    Article  MATH  Google Scholar 

  54. Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids. 1992;40(6):1377–97.

    Article  MATH  Google Scholar 

  55. Turon A, Davila CG, Camanho PP, Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech. 2007;74(10):1665–82.

    Article  Google Scholar 

  56. Nguyen O, Ea R, Ortiz M, Radovitzky R. A cohesive model of fatigue crack growth. Int J Fract. 2001;110(4):351–69.

    Article  Google Scholar 

  57. Fremy F, Pommier S, Galenne E, Courtin S, Le Roux JC. Load path effect on fatigue crack propagation in I+II+III mixed mode conditions Part 2: finite element analyses. Int J Fatigue. 2014;62:113–8.

    Article  Google Scholar 

  58. Karolczuk A, Macha E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. Int J Fract. 2005;134(3–4):267–304.

    Article  MATH  Google Scholar 

  59. Freund LB. Dynamic fracture mechanics. Cambridge: Cambridge University Press; 1990.

    Book  MATH  Google Scholar 

  60. Fineberg J, Marder M. Instability in dynamic fracture. Phys Rep. 1999;313(1–2):1–108.

    Article  MathSciNet  Google Scholar 

  61. Freund LB. Crack propagation in an elastic solid subjected to general loading-I. Constant rate of extension. J Mech Phys Solids. 1972;20(3):129–40.

    Article  MATH  Google Scholar 

  62. Swenson DV, Ingraffea AR. Modeling mixed-mode dynamic crack propagation using finite elements: theory and applications. Comput Mech. 1988;3(6):381–97.

    Article  MATH  Google Scholar 

  63. Yoffe EH. LXXV. The moving griffith crack. London, Edinburgh, Dublin Philos Mag J Sci. 1951;42(330):739–50.

    Article  MathSciNet  MATH  Google Scholar 

  64. XP X, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids. 1994;42(9):1397–434.

    Article  MATH  Google Scholar 

  65. Pandolfi A, Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng Comput. 2002;18(2):148–59.

    Article  Google Scholar 

  66. Miller O, Freund LB, Needleman A. Energy dissipation in dynamic fracture of brittle materials. Model Simul Mater Sci Eng. 1999;7(4):573–86.

    Article  Google Scholar 

  67. Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng. 2001;190(15–17):2227–62.

    Article  MATH  Google Scholar 

  68. Menouillard T, Réthoré J, Moës N, Combescure A, Bung H. Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng. 2008;74(3):447–74.

    Article  MathSciNet  MATH  Google Scholar 

  69. Prabel B, Combescure A, Gravouil A, Marie S. Level set X-FEM non-matching meshes: application to dynamic crack propagation in elasticplastic media. Int J Numer Methods Eng. 2007;69(8):1553–69.

    Article  MATH  Google Scholar 

  70. Schiavone A, Abeygunawardana-Arachchige G, Silberschmidt VV. Crack initiation and propagation in ductile specimens with notches: experimental and numerical study. Acta Mech. 2016;227(1):203–15.

    Article  Google Scholar 

  71. Chandwani R, Wiehahn M, Timbrell C. 3D fracture mechanics in ANSYS. In: UK ANSYS Conference. 2004. p. 1–19.

    Google Scholar 

  72. Wawrzynek P, Carter BJ, Ingraffea AR. Advances in simulation of arbitrary 3D crack growth using FRANC3D NG. ICF12, Ottawa 2009. 2012. p. 1–11.

    Google Scholar 

  73. Dhondt G. Application of the finite element method to mixed-mode cyclic crack propagation calculations in specimens. Int J Fatigue. 2014;58:2–11.

    Article  Google Scholar 

  74. Mishnaevsky LL, Lippmann N, Schmauder S. Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials. Int J Fract. 2003;120(4):581–600.

    Article  Google Scholar 

  75. Scheider I, Brocks W. Simulation of cupcone fracture using the cohesive model. Eng Fract Mech. 2003;70(14):1943–61.

    Article  Google Scholar 

  76. Ventura G. On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng. 2006;66(5):761–95.

    Article  MathSciNet  MATH  Google Scholar 

  77. Song JH, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng. 2006;67(6):868–93.

    Article  MATH  Google Scholar 

  78. Mishnaevsky LL, Schmauder S. Continuum mesomechanical finite element modeling in materials development: a state-of-the-art review. Appl Mech Rev. 2001;54(1):49.

    Article  Google Scholar 

  79. Kumar S, Curtin WA. Crack interaction with microstructure. Mater Today. 2007;10(9):34–44.

    Article  Google Scholar 

  80. Dong M, Schmauder S. Transverse mechanical behaviour of fiber reinforced composites FE modelling with embedded cell models. Comput Mater Sci. 1996;5(1–3):53–66.

    Article  Google Scholar 

  81. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct. 2003;40(13–14):3647–79.

    Article  MATH  Google Scholar 

  82. Espinosa HD, Zavattieri PD. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: theory and numerical implementation. Mech Mater. 2003;35(3–6):333–64.

    Article  Google Scholar 

  83. Rezaei S, Wulfinghoff S, Kebriaei R, Reese S. Application of a cohesive zone element for the prediction of damage in nano/micro coating. PAMM. 2015;15(1):145–6.

    Article  Google Scholar 

  84. Zhai J, Tomar V, Zhou M. Micromechanical simulation of dynamic fracture using the cohesive finite element method. J Eng Mater Technol. 2004;126(2):179.

    Article  Google Scholar 

  85. Bäker M. Finite element simulation of interface cracks in thermal barrier coatings. Comput Mater Sci. 2012;64:79–83.

    Article  Google Scholar 

  86. Ayyar A, Chawla N. Microstructure-based modeling of crack growth in particle reinforced composites. Compos Sci Technol. 2006;66(13):1980–94.

    Article  Google Scholar 

  87. Turon A, Camanho PP, Costa J, Davila CG. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater. 2006;38(11):1072–89.

    Article  Google Scholar 

  88. Yang Q, Cox B. Cohesive models for damage evolution in laminated composites. Int J Fract. 2005;133(2):107–37.

    Article  MATH  Google Scholar 

  89. Liu PF, Zheng JY. Recent developments on damage modeling and finite element analysis for composite laminates: a review. Mater Des. 2010;31(8):3825–34.

    Article  Google Scholar 

  90. Camanho PP, Davila CG, De Moura MF. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater. 2003;37(16):1415–38.

    Article  Google Scholar 

  91. Stier B, Simon JW, Reese S. Finite element analysis of layered fiber composite structures accounting for the material’s microstructure and delamination. Appl Compos Mater. 2015;22(2):171–87.

    Article  Google Scholar 

  92. Merzbacher MJ, Horst P. A model for interface cracks in layered orthotropic solids: convergence of modal decomposition using the interaction integral method. Int J Numer Methods Eng. 2009;77(8):1052–71.

    Article  MATH  Google Scholar 

  93. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98.

    Article  Google Scholar 

  94. Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV. Fracture of cortical bone tissue. In: Altenbach H, Brünig M, editors. Inelastic behavior of materials and structures under monotonic and cyclic loading. Vol. 57 of Advanced Structured Materials. Cham: Springer International Publishing; 2015. p. 143–70.

    Google Scholar 

  95. Abdel-Wahab A, Li S, Silberschmidt VV. Modelling fracture processes in bones. In: Computational modelling of biomechanics and biotribology in the musculoskeletal system. Cambridge: Elsevier; 2014. p. 268–302.

    Chapter  Google Scholar 

  96. Ural A, Vashishth D. Cohesive finite element modeling of age-related toughness loss in human cortical bone. J Biomech. 2006;39(16):2974–82.

    Article  Google Scholar 

  97. Nalla RK, Stölken JS, Kinney JH, Ritchie RO. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech. 2005;38(7):1517–25.

    Article  Google Scholar 

  98. Raeisi Najafi A, Arshi AR, Eslami MR, Fariborz S, Moeinzadeh MH. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties. J Biomech. 2007;40(12):2788–95.

    Article  Google Scholar 

  99. Budyn E, Hoc T, Jonvaux J. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput Mech. 2008;42(4):579–91.

    Article  MATH  Google Scholar 

  100. Giner E, Arango C, Vercher A, Javier Fuenmayor F. Numerical modelling of the mechanical behaviour of an osteon with microcracks. J Mech Behav Biomed Mater. 2014;37:109–24.

    Article  Google Scholar 

  101. Jin Z, Batra R. Some basic fracture mechanics concepts in functionally graded materials. J Mech Phys Solids. 1996;44(8):1221–35.

    Article  Google Scholar 

  102. Kim JH, Paulino GH. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Methods Eng. 2002;53(8):1903–35.

    Article  MATH  Google Scholar 

  103. Kim JH, Paulino GH. Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method. Eng Fract Mech. 2002;69(14–16):1557–86.

    Article  Google Scholar 

  104. Dolbow J, Gosz M. On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct. 2002;39(9):2557–74.

    Article  MATH  Google Scholar 

  105. Tilbrook MT, Moon RJ, Hoffman M. Finite element simulations of crack propagation in functionally graded materials under flexural loading. Eng Fract Mech. 2005;72(16):2444–67.

    Article  Google Scholar 

  106. Cannillo V, Manfredini T, Montorsi M, Siligardi C, Sola A. Microstructure-based modelling and experimental investigation of crack propagation in glass-alumina functionally graded materials. J Eur Ceram Soc. 2006;26(15):3067–73.

    Article  Google Scholar 

  107. Hillerborg A, Modéer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res. 1976;6(6):773–81.

    Article  Google Scholar 

  108. Bocca P, Carpinteri A, Valente S. Mixed mode fracture of concrete. Int J Solids Struct. 1991;27(9):1139–53.

    Article  Google Scholar 

  109. Rots JG, Nauta P, Kusters GMA, Blaauwendraad J. Smeared crack approach and fracture localization in concrete. HERON 1985;30(1).

    Google Scholar 

  110. Jirásek M. Damage and smeared crack models. Numer Model Concrete Crack. 2011;532:1–49.

    Article  MATH  Google Scholar 

  111. de Borst R, Remmers JJC, Needleman A, Abellan MA. Discrete vs smeared crack models for concrete fracture: bridging the gap. Int J Numer Anal Methods Geomech. 2004;28(7–8):583–607.

    Article  MATH  Google Scholar 

  112. Bocca P, Carpinteri A, Valente S. Size effects in the mixed mode crack propagation: softening and snap-back analysis. Eng Fract Mech. 1990;35(1–3):159–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bäker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bäker, M., Reese, S., Silberschmidt, V.V. (2019). Simulation of Crack Propagation Under Mixed-Mode Loading. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_29

Download citation

Publish with us

Policies and ethics