Skip to main content

Mechanics of Auxetic Materials

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

Poisson’s ratio is a mechanical property that represents the lateral behavior of materials under an axial load. In contrast to typical natural materials with a positive Poisson’s ratio, auxetic materials have a negative Poisson’s ratio (NPR) characterized by unilateral shrinkage or expansion against axial compressive or tensile loadings, respectively. Here, based on a comparison between conventional and auxetic materials, a review of auxetic materials that exhibit various types of deformation mechanisms and characteristics induced by a negative Poisson’s ratio is provided. First, the deformation mechanisms in auxetic materials resulting in lateral expansion under tensile loads are described. They are classified according to their deformation mechanism or the structural motif enabling the auxetic behavior including re-entrant structures, rotating unit structures, chiral structures, fibril/nodule structures, buckling-induced structures, helical yarn structures, Miura-folded structures, and crumpled structures. Then, the expected properties of auxetic materials in several aspects are discussed. The mechanical response of these materials can be drastically changed depending on the amount of applied loads, and auxetic materials are expected to have unusual, possibly enhanced geometrical and mechanical characteristics such as synclastic curvature in bending, deformation-dependent permeability, high shear stiffness, indentation resistance, and fracture toughness, and improved damping and sound absorption properties. Finally, some representative potential applications of auxetic materials are illustrated with a short discussion on the limitations and outlook of auxetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan H, Ohtaki H, Kotosaka S, Hu G. A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur J Mech – A/Solids. 2004;23:95–106.

    Article  Google Scholar 

  2. Prawoto Y. Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput Mater Sci. 2012;58:140–53.

    Article  Google Scholar 

  3. Lakes R. Foam structures with a negative Poisson's ratio. Science. 1987;235:1038–41.

    Article  Google Scholar 

  4. Evans KE, Alderson A. Auxetic materials: functional materials and structures from lateral thinking! Adv Mater. 2000;12:617–28.

    Article  Google Scholar 

  5. Wang Z, Hu H. Auxetic materials and their potential applications in textiles. Text Res J. 2014;84:1600–11.

    Article  Google Scholar 

  6. Underhill RS. Defense applications of Auxetic materials. Adv Mater. 2014;1:7–13.

    Google Scholar 

  7. Alderson KL, Pickles AP, Neale PJ, Evans KE. Auxetic polyethylene: the effect of a negative Poisson’s ratio on hardness. Acta Metall Mater. 1994;42:2261–6.

    Article  Google Scholar 

  8. Choi JB, Lakes RS. Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis. Int J Fract. 1996;80:73–83.

    Article  Google Scholar 

  9. Liu Q. Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence. Defence Science and Technology Organisation Victoria (Australia) Air Vehicles Div; 2006.

    Google Scholar 

  10. Donoghue JP, Alderson KL, Evans KE. The fracture toughness of composite laminates with a negative Poisson’s ratio. Phys Status Solidi B. 2009;246:2011–7.

    Article  Google Scholar 

  11. Maiti SK, Ashby MF, Gibson LJ. Fracture toughness of brittle cellular solids. Scr Metall. 1984;18:213–7.

    Article  Google Scholar 

  12. Chekkal I, Bianchi M, Remillat C, Becot FX, Jaouen L, Scarpa F. Vibro-acoustic properties of auxetic open cell foam: model and experimental results. Acta Acustica United Acustica. 2010;96:266–74.

    Article  Google Scholar 

  13. Howell B, Prendergast P, Hansen L. Examination of acoustic behavior of negative poisson’s ratio materials. Appl Acoust. 1994;43:141–8.

    Article  Google Scholar 

  14. Alderson KL, Webber RS, Mohammed UF, Murphy E, Evans KE. An experimental study of ultrasonic attenuation in microporous polyethylene. Appl Acoust. 1997;50:23–33.

    Article  Google Scholar 

  15. Scarpa F, Ciffo LG, Yates JR. Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater Struct. 2003;13:49.

    Article  Google Scholar 

  16. Bhullar SK, Lala NL, Ramkrishna S. Smart biomaterials - a review. Review on advanced. Mater Sci. 2015;40:303–14.

    Google Scholar 

  17. Novak N, Vesenjak M, Ren Z. Auxetic cellular materials - a review. Strojniški Vestnik – J Mech Eng. 2016;62:485–93.

    Article  Google Scholar 

  18. Imbalzano G, Tran P, Ngo TD, Lee PV. Three-dimensional modelling of auxetic sandwich panels for localised impact resistance. J Sandw Struct Mater. 2017;19:291–316.

    Article  Google Scholar 

  19. Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE. An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res. 2000;39:654–65.

    Article  Google Scholar 

  20. Mark AG, Palagi S, Qiu T, Fischer P. Auxetic metamaterial simplifies soft robot design. In Robotics and Automation (ICRA), International Conference on Robotics and Automation. IEEE. 2016.

    Google Scholar 

  21. Konaković M, Crane K, Deng B, Bouaziz S, Piker D, Pauly M. Beyond developable: computational design and fabrication with auxetic materials. ACM Trans Graph (TOG). 2016;35:79–89.

    Article  Google Scholar 

  22. Carneiro VH, Meireles J, Puga H. Auxetic materials - a review. Mater Sci – Poland. 2013;31:561–71.

    Article  Google Scholar 

  23. Masters IG, Evans KE. Models for the elastic deformation of honeycombs. Compos Struct. 1996;35:403–22.

    Article  Google Scholar 

  24. Yang L, Harrysson O, West H, Cormier D. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int J Solids Struct. 2015;69:475–90.

    Article  Google Scholar 

  25. Larsen UD, Signund O, Bouwsta S. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. J Microelectromech Syst. 1997;6:99–106.

    Article  Google Scholar 

  26. Theocaris PS, Stavroulakis GE, Panagiotopoulos PD. Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach. Arch Appl Mech. 1997;67:274–86.

    Article  Google Scholar 

  27. Wang ZP, Poh LH, Dirrenberger J, Zhu Y, Forest S. Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Comput Methods Appl Mech Eng. 2017;323:250–71.

    Article  MathSciNet  Google Scholar 

  28. Wang XT, Wang B, Li XW, Ma L. Mechanical properties of 3D re-entrant auxetic cellular structures. Int J Mech Sci. 2017;131:396–407.

    Article  Google Scholar 

  29. Grima JN, Evans KE. Auxetic behavior from rotating squares. J Mater Sci Lett. 2000;19:1563–5.

    Article  Google Scholar 

  30. Grima JN, Farrugia PS, Gatt R, Attard D. On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi B. 2008;245:521–9.

    Article  Google Scholar 

  31. Grima JN, Gatt R, Alderson A, Evans KE. On the auxetic properties of rotating rectangles’ with different connectivity. J Phys Soc Jpn. 2005;74:2866–7.

    Article  Google Scholar 

  32. Grima JN, Chetcuti E, Manicaro E, Attard D, Camilleri M, Gatt R, Evans KE. On the auxetic properties of generic rotating rigid triangles. In Proceedings of the Royal Society of London A. 2011.

    Article  MathSciNet  Google Scholar 

  33. Shan S, Kang SH, Zhao Z, Fang L, Bertoldi K. Design of planar isotropic negative Poisson’s ratio structures. Extreme Mech Lett. 2015;4:96–102.

    Article  Google Scholar 

  34. Kim J, Shin D, Yoo DS, Ki K. Regularly configured structures with polygonal prisms for three-dimensional auxetic behaviour. In Proceedings of the Royal Society of London A. 2017.

    Article  MathSciNet  Google Scholar 

  35. Prall D, Lakes RS. Properties of a chiral honeycomb with a Poisson’s ratio of −1. Int J Mech Sci. 1997;39:305–14.

    Article  Google Scholar 

  36. Grima JN, Gatt R, Farrugia PS. On the properties of auxetic meta-tetrachiral structures. Phys Status Solidi B. 2008;245:511–20.

    Article  Google Scholar 

  37. Evans KE, Caddock BD. Microporous materials with negative Poisson’s ratios II. Mechanisms and interpretation. J Phys D Appl Phys. 1989;22:1877–83.

    Article  Google Scholar 

  38. He C, Liu P, Griffin AC. Toward negative Poisson ratio polymers through molecular design. Macromolecules. 1998;31:3145–7.

    Article  Google Scholar 

  39. Schenk M, Guest SD. Geometry of Miura-folded metamaterials. Proc Natl Acad Sci. 2013;110:3276–81.

    Article  Google Scholar 

  40. Bertoldi K, Boyce MC, Deschanel S, Prange SM, Mullin T. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. J Mech Phys Solids. 2008;56:2642–68.

    Article  Google Scholar 

  41. Javid F, Liu J, Shim J, Weaver JC, Shanian A, Bertoldi K. Mechanics of instability-induced pattern transformations in elastomeric porous cylinders. J Mech Phys Solids. 2016;96:1–17.

    Article  MathSciNet  Google Scholar 

  42. Shim J, Perdigou C, Chen ER, Bertoldi K, Reis PM. Buckling-induced encapsulation of structured elastic shells under pressure. Proc Natl Acad Sci. 2012;109:5978–83.

    Article  Google Scholar 

  43. Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K. 3D soft metamaterials with negative Poisson's ratio. Adv Mater. 2013;25:5044–9.

    Article  Google Scholar 

  44. Miller W, Hook PB, Smith CW, Wang X, Evans KE. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol. 2009;69:651–5.

    Article  Google Scholar 

  45. Grima JN, Winczewski S, Mizzi L, Grech MC, Cauchi R, Gatt R, Rybicki J. Tailoring graphene to achieve negative Poisson's ratio properties. Adv Mater. 2015;27:1455–9.

    Article  Google Scholar 

  46. Bouaziz O, Masse JP, Allain S, Orgéas L, Latil P. Compression of crumpled aluminum thin foils and comparison with other cellular materials. Mater Sci Eng A. 2013;570:1–7.

    Article  Google Scholar 

  47. JCA E, Lantada AD. Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater Struct. 2012;21:104993–5004.

    Google Scholar 

  48. Saxena KK, Das R, Calius EP. Three decades of auxetics research - materials with negative Poisson’s ratio: a review. Adv Eng Mater. 2016;18:1847–70.

    Article  Google Scholar 

  49. Choi JB, Lakes RS. Non-linear properties of polymer cellular materials with a negative Poisson's ratio. J Mater Sci. 1992;27:4678–84.

    Article  Google Scholar 

  50. Evans KE. Auxetic polymers: a new range of materials. Endeavour. 1991;15:170–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonho Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cho, H., Seo, D., Kim, DN. (2019). Mechanics of Auxetic Materials. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_25

Download citation

Publish with us

Policies and ethics