Skip to main content

Understanding Fracture and Fatigue at the Chemical Bond Scale: Potential of Raman Spectroscopy

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 4441 Accesses

Abstract

Coupled mechanical and Raman analysis of a material under tension or compression provides much information on the material’s (nano)structure. Raman extensometry can be applied to synthetic and natural polymer fibers (e.g., polyamides [polyamide 66], polyethyleneterephthalate, polypropylene, poly[paraphenylene benzobisoxazole], keratin/hair, and silkworm and spider silks). The technique allows differentiation between crystalline and amorphous macromolecules. Bonding is similar in the two cases, but each exhibits different Raman signatures, especially at low wavenumbers, and a broader distribution of conformations is observed for amorphous macromolecules. These conclusions are used to discuss modifications induced by the application of a tensile or compressive stress up to the point of fracture – in particular the effects of fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews MC, Young RJ. Analysis of the deformation of aramid fibers and composites using Raman spectroscopy. J Raman Spectrosc. 1993;24(8):539–44.

    Article  Google Scholar 

  2. Beyerlein IJ, Amer MS, Schadler LS, Phoenix SL. New methodology for determining in situ fiber, matrix and interface stresses in damaged multifiber composites. Sci Eng Compos Mater. 1998;7(1–2):151–204.

    Google Scholar 

  3. Bulkin BJ, Lewin M, DeBlase FJ. Conformational change, chain orientation, and crystallinity in poly(ethylene terephthalate) yarns: Raman spectroscopic study. Macromolecules. 1985;18(12):2587–94.

    Article  Google Scholar 

  4. Colomban P. Hydrogen bonding in hydrogen-substituted lithium aluminosilicate. J Mol Struct. 1992;270:407–16.

    Article  Google Scholar 

  5. Colomban P. Analysis of strain and stress in ceramic, polymer and metal matrix composites by Raman spectroscopy. Adv Eng Mater. 2002;4(8):535–42.

    Article  Google Scholar 

  6. Colomban P. Nanomechanics of advanced polymer fibres. Compos Sci Technol. 2009;69(9):1437–41.

    Article  Google Scholar 

  7. Colomban P. Understanding the nano- and macromechanical behaviour, the failure and fatigue mechanisms of advanced and natural polymer fibres by Raman/IR microspectrometry. Adv Nat Sci Nanosci Nanotechnol. 2013;4:013001.

    Article  Google Scholar 

  8. Colomban P, Dinh HM. Origin of the variability of the mechanical properties of silk fibres: 2. The nanomechanics of single silkworm and spider fibres. J Raman Spectrosc. 2012;43(8):1035–41.

    Article  Google Scholar 

  9. Colomban P, Gouadec G. Raman and IR micro-analysis of high performance polymer fibres tested in traction and compression. Compos Sci Technol. 2009;69(1):10–6.

    Article  Google Scholar 

  10. Colomban P, Jauzein V. Silk: fibers, films, and composites: types, processing, structure, and mechanics, ch. 5. In: Bunsell AR, editor. Handbook of tensile properties of textiles and technical fibres. 2nd ed. Oxford: Woodhead Publishing-Elsevier; 2018.

    Google Scholar 

  11. Colomban P, Gruger A, Regis A, Novak A. Infrared and Raman study of polyaniline Part I. Hydrogen bonding and electronic mobility in emeraldine salts. J Mol Struct. 1994;317(3):261–71.

    Article  Google Scholar 

  12. Colomban P, Folch S, Gruger A. Vibrational study of short-range order and structure of polyaniline base and salt. Macromolecules. 1999;32(9):3080–92.

    Article  Google Scholar 

  13. Colomban P, Sagon G, Lesage M, Herrera Ramirez JM. MicroRaman study of the compressive behaviour of polyamide (PA66) fibres in a diamond-anvil cell. Vib Spectrosc. 2005;37(1):83–90.

    Article  Google Scholar 

  14. Colomban P, Herrera Ramirez JM, Paquin R, Marcellan A, Bunsell A. Micro-Raman study of the fatigue and fracture behaviour of single PA66 fibres. Comparison with single PET and PP fibres. Eng Fract Mech. 2006a;73(16):2463–75.

    Article  Google Scholar 

  15. Colomban P, Gouadec G, Mathez J, Tschiember J, Peres P. Raman stress measurement in opaque industrial C-f/epoxy composites submitted to tensile strain. Compos A Appl Sci Manuf. 2006b;37(4):646–51.

    Article  Google Scholar 

  16. Colomban P, Aidi-Mounsi A, Limage M-H. Micro-Raman & IR study of the compressive behaviour of poly(paraphenylene benzobisoxazole) (PBO) fibres in a diamond-anvil cell. J Raman Spectrosc. 2007;38(1):100–9.

    Article  Google Scholar 

  17. Colomban P, Dinh HM, Riand J, Prinsloo LC, Mauchamp B. Nanomechanics of single silkworm and spider fibres: a Raman and micro-mechanical in situ study of the conformation change with stress. J Raman Spectrosc. 2008;39(12):1749–64.

    Article  Google Scholar 

  18. Colomban P, Dinh HM, Bunsell AR, Mauchamp B. Origin of the variability of the mechanical properties of silk fibres: 1 – the relationship between disorder, hydration and stress/strain behaviour. J Raman Spectrosc. 2012a;43(3):425–32.

    Article  Google Scholar 

  19. Colomban P, Tournié A, Dinh HM, Jauzein V. Origin of the variability of the mechanical properties of silk fibres: 3. Order and macromolecule orientation in Bombyx mori bave, hand-stretched strings and Nephila madagascarensis spider fibres. J Raman Spectrosc. 2012b;43(8):1042–8.

    Article  Google Scholar 

  20. Davies RJ, Eichhorn SJ, Riekel C, Young RJ. Crystallographic texturing in single poly(p-phenylene benzobisoaxole) fibres investigated using synchrotron radiation. Polymer. 2005;46(6):1935–42.

    Article  Google Scholar 

  21. DeBlase FJ, McKelvy ML, Lewin M, Bulkin BJ. Low-frequency Raman spectra of poly(ethylene terephthalate). J Polym Sci Polym Part C Polym Lett. 1985;23(2):109–15.

    Article  Google Scholar 

  22. Dumas P, Tobin MJ. A bright source for infrared microspectroscopy: synchrotron radiation. Spectrosc Eur. 2003;15(6):17–23.

    Google Scholar 

  23. Ellis G, Roman F, Marco C, Gomez MA, Fatou JG. FT Raman study of orientation and crystallization processes in poly(ethylene terephthalate). Spectrochim Acta A. 1995;51(12):2139–45.

    Article  Google Scholar 

  24. Gouadec G, Colomban P. Raman study of nanomaterials: how spectra related to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater. 2007;53(1):1–56.

    Article  Google Scholar 

  25. Gouadec G, Karlin S, Colomban P. Raman extensometry study of NLM202 (R) and Hi-Nicalon (R) SiC fibre. Compos Part B Eng. 1998;29(3):251–61.

    Article  Google Scholar 

  26. Gouadec G, Colomban P, Bansal NP. Raman study of Hi-Nicalon fiber reinforced celsian composites. Part II: residual stress in the fibers. J Am Ceram Soc. 2001;84(5):1136–42.

    Article  Google Scholar 

  27. Guinier A. Théorie et technique de la radiocristallographie. Paris: Dunod; 1956. p. 615–20.

    Google Scholar 

  28. Herrera Ramirez JM, Bunsell AR, Colomban P. Microstructural mechanisms governing the fatigue failure of polyamide 66 fibres. J Mater Sci. 2006;41(22):7261–4271.

    Article  Google Scholar 

  29. Kitagawa T, Yabuki K, Young RJ. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression. Polymer. 2001;42(5):2101–12.

    Article  Google Scholar 

  30. Kreplak L, Doucet J, Briki F. Unraveling double stranded α-helical coiled coils: an X-ray diffraction study on hard α-keratin fibres. Biopolymers. 2001;58(5):526–33.

    Article  Google Scholar 

  31. Lesko CCC, Rabolt JF, Ikeda RM, Chase B, Kennedy A. Experimental determination of the fiber orientation parameters and the Raman tensor of the 1614 cm−1 band of poly(ethylene terephthalate). J Mol Struct. 2000;521(SI):127–36.

    Article  Google Scholar 

  32. Maddams WF, Royaud IAM. The application of Fourier transform Raman spectroscopy to the identification and characterisation of polyamides, II. Double number nylons. Spectrochim Acta A. 1991;47(9–10):1327–33.

    Article  Google Scholar 

  33. Marcellan A, Bunsell AR, Piques R, Colomban P. Micro-mechanisms, mechanical behaviour and probabilistic fracture analysis of PA 66 fibres. J Mater Sci. 2003;38(10):2117–23.

    Article  Google Scholar 

  34. Marcellan A, Colomban Ph, Bunsell AR. (Nano)structure, skin/core and tension behaviour of polyamide fibres. J Raman Spectrosc. 2004;35(4):308–15.

    Article  Google Scholar 

  35. Novak A. Hydrogen bonding in solids correlation of spectroscopic and crystallographic data. Struct Bond. 1974;18:177–8.

    Article  Google Scholar 

  36. Paquin R, Colomban P. Nanomechanics of single keratin fibres: a Raman study of the α helix-β sheet transition and water effect. J Raman Spectrosc. 2007;38(5):504–14.

    Article  Google Scholar 

  37. Paquin R, Limage M-H, Colomban P. Micro-Raman study of PET single fibre under high hydrostatic pressure: phase/conformation transition and amorphisation. J Raman Spectrosc. 2007;38(9):1097–105.

    Article  Google Scholar 

  38. Purvis J, Bower DI. Molecular orientation in poly(ethylene terephthalate) by means of laser-Raman spectroscopy. J Polym Sci Polym Phys. 1976;14(8):1461–84.

    Article  Google Scholar 

  39. Ramirez JMH, Colomban P, Bunsell AR. Micro-Raman study of the fatigue fracture and tensile behaviour of polyamide (PA 66) fibres. J Raman Spectrosc. 2004;35(12):1063–72.

    Article  Google Scholar 

  40. Robinson IM, Zakikhani M, Day RJ, Young RJ, Galiotis C. Strain dependence of the Raman frequencies for different types of carbon-fibers. J Mater Sci Lett. 1987;6(10):1212–4.

    Article  Google Scholar 

  41. Rodriguez-Cabello JC, Quintanilla L, Pastor JM. Fourier transform Raman study of the conformer in poly(ethylene terephthalate). J Raman Spectrosc. 1994;255:335–44.

    Article  Google Scholar 

  42. Sirichaisit J, Young RJ. Tensile and compressive deformation of polypyridobisimidazole (PIPD)-based ‘M5’ rigid-rod polymer fibres. Polymer. 1999;40(12):3421–31.

    Article  Google Scholar 

  43. Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ. The effect of nanostructure upon the compressive strength of carbon fibres. J Mater Sci. 2013;48(5):2104–10.

    Article  Google Scholar 

  44. Van den Heuvel PWJ, Peijs T, Young RJ. Failure phenomena in two-dimensional multi-fibre microcomposites. 2. A Raman spectroscopic study of the influence of inter-fibre spacing on stress concentrations. Compos Sci Technol. 1997;57(8):899–911.

    Article  Google Scholar 

  45. Wojcieszak M, Percot A, Noinville S, Gouadec G, Mauchamp B, Colomban P. Origin of the variability of the mechanical properties of silk fibers: 4. Order/crystallinity along silkworm and spider fibers. J Raman Spectrosc. 2014;45(10):895–902.

    Article  Google Scholar 

  46. Wollbrett-Blitz J. Comportement mécanique longitudinal et transverse, micro-mécanismes de déformation et effet de la température sur la fibre Kevlar® 2. PhD dissertation. Paris: Paris-Tech; 2014.

    Google Scholar 

  47. Wu J, Colomban P. Raman spectroscopy study on the stress distribution in the continuous fibre reinforced ceramic matrix composites. J Raman Spectrosc. 1997;28(7):523–9.

    Article  Google Scholar 

  48. Yang S, Michielsen S. Determination of the orientation parameters and the Raman tensor of the 998 cm−1 band of poly(ethylene terephthalate). Macromolecules. 2002;35(27):10108–13.

    Article  Google Scholar 

  49. Young RJ, Deng LB, Wafy TZ, Kinloch IA. Interfacial and internal stress transfer in carbon nanotube based nanocomposites. J Mater Sci. 2016;51(1):344–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Colomban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Colomban, P. (2019). Understanding Fracture and Fatigue at the Chemical Bond Scale: Potential of Raman Spectroscopy. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_23

Download citation

Publish with us

Policies and ethics