Skip to main content

Atomistic Modeling of Radiation Damage in Metallic Alloys

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

The primary damage in metallic alloys, i.e., the point defect distribution resulting from the interaction between an energetic particle and a metallic matrix has been investigated for more than 60 years using atomistic simulations. In this chapter, we present an overview of the techniques used as well as the results achieved so far to conclude on the open questions and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2T-MD:

Two temperature molecular dynamics

BCA:

Binary collision approximation

bcc:

body-centered cubic

dpa:

displacement per atom

fcc:

face-centered cubic

EAM:

Embedded atom method

EPC:

Electron phonon coupling

FP:

Frenkel pairs

GB:

Grain boundary

hcp:

hexagonal close packed

KMC:

Kinetic Monte Carlo

MD:

Molecular dynamics

MFRT:

Mean field rate theory

MSD:

Mean square displacement

NRT:

Norgett Robinson Torrens

PKA:

Primary knock-on atom

RCS:

Replacement collision sequence

SIA:

Self-interstitial atoms

SKA:

Secondary knock-on atom

TDE:

Threshold displacement energies

TEM:

Transmission electron microscope

References

  1. Becquart CS, Domain C. Modeling microstructure and irradiation effects. Metall Mater Trans A. 2011;42:852–70.

    Article  Google Scholar 

  2. Eckstein W. Computer simulation of ion-solid interactions. 1991. https://doi.org/10.1007/978-3-642-73513-4.

    Book  Google Scholar 

  3. Max Planck Society – eDoc Server. http://edoc.mpg.de/552734. Accessed 4 Feb 2017.

  4. Robinson MT. Slowing-down time of energetic atoms in solids. Phys Rev B. 1989;40:10717–26.

    Article  Google Scholar 

  5. The MDRANGE (<tt>mdh</tt>) program. http://beam.helsinki.fi/~knordlun/mdh/mdh_program.html. Accessed 4 Feb 2017.

  6. DART-V.1, displacement per atom, primary knocked-on atoms produced in an atomic solid target. https://www.oecd-nea.org/tools/abstract/detail/nea-1885/. Accessed 4 Feb 2017.

  7. Hou M, Ortiz CJ, Becquart CS, Domain C, Sarkar U, Debacker A. Microstructure evolution of irradiated tungsten: crystal effects in He and H implantation as modelled in the Binary Collision Approximation. J Nucl Mater. 2010;403:89–100.

    Article  Google Scholar 

  8. Ortiz CJ, Souidi A, Becquart CS, Domain C, Hou M. Recent radiation damage studies and developments of the Marlowe code. Radiat Eff Defects Solids. 2014;169:592–602.

    Article  Google Scholar 

  9. De Backer A, Sand A, Ortiz CJ, Domain C, Olsson P, Berthod E, Becquart CS. Primary damage in tungsten using the binary collision approximation, molecular dynamic simulations and the density functional theory. Phys Scr. 2016;T167:014018.

    Article  Google Scholar 

  10. Nordlund K, Djurabekova F, Hobler G. Large fraction of crystal directions leads to ion channeling. Phys Rev B. 2016. https://doi.org/10.1103/PhysRevB.94.214109.

  11. Heinisch HL, Singh BN. On the structure of irradiation-induced collision cascades in metals as a function of recoil energy and crystal structure. Philos Mag A. 1993;67:407–24.

    Article  Google Scholar 

  12. Ryazanov AI, Metelkin EV, Semenov EV. Modeling of cascade and sub-cascade formation at high PKA energies in irradiated fusion structural materials. J Nucl Mater. 2009;386–388:132–4.

    Article  Google Scholar 

  13. Simeone D, Luneville L, Serruys Y. Cascade fragmentation under ion beam irradiation: a fractal approach. Phys Rev E. 2010. https://doi.org/10.1103/PhysRevE.82.011122.

  14. De Backer A, Sand AE, Nordlund K, Luneville L, Simeone D, Dudarev SL. Subcascade formation and defect cluster size scaling in high-energy collision events in metals. EPL Europhys Lett. 2016;115:26001.

    Article  Google Scholar 

  15. Development O for EC-O. Primary Radiation Damage in Materials. Review of Current Understanding and Proposed New Standard Displacement Damage Model to Incorporate in Cascade Defect Production Efficiency and Mixing Effects. Organisation for Economic Co-Operation and Development. 2015.

    Google Scholar 

  16. Stoller RE, Toloczko MB, Was GS, Certain AG, Dwaraknath S, Garner FA. On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2013;310:75–80.

    Article  Google Scholar 

  17. Gibson JB, Goland AN, Milgram M, Vineyard GH. Dynamics of radiation damage. Phys Rev. 1960;120:1229–53.

    Article  Google Scholar 

  18. Becquart CS, Decker KM, Domain C, Ruste J, Souffez Y, Turbatte JC, Van Duysen JC. Massively parallel molecular dynamics simulations with EAM potentials. Radiat Eff Defects Solids. 1997;142:9–21.

    Article  Google Scholar 

  19. Ziegler J, Littmark U, Biersack JP. The stopping range of ions in solids. In: Stopping Range Ions Solids. New York: Pergamon Press; 1985.

    Google Scholar 

  20. Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29:6443–53.

    Article  Google Scholar 

  21. Malerba L, Perlado JM. Basic mechanisms of atomic displacement production in cubic silicon carbide: a molecular dynamics study. Phys Rev B. 2002. https://doi.org/10.1103/PhysRevB.65.045202.

  22. Erginsoy C, Vineyard GH, Englert A. Dynamics of radiation damage in a body-centered cubic lattice. Phys Rev. 1964;133:A595–606.

    Article  Google Scholar 

  23. Nordlund K, Wallenius J, Malerba L. Molecular dynamics simulations of threshold displacement energies in Fe. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2006;246:322–32.

    Article  Google Scholar 

  24. Becquart C, Domain C, Legris A, Van Duysen J. Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades. J Nucl Mater. 2000;280:73–85.

    Article  Google Scholar 

  25. Becquart CS, Souidi A, Hou M. Relation between the interaction potential, replacement collision sequences, and collision cascade expansion in iron. Phys Rev B. 2002. https://doi.org/10.1103/PhysRevB.66.134104.

  26. Sand AE, Dequeker J, Becquart CS, Domain C, Nordlund K. Non-equilibrium properties of interatomic potentials in cascade simulations in tungsten. J Nucl Mater. 2016;470:119–27.

    Article  Google Scholar 

  27. Stoller RE, Tamm A, Béland LK, et al. Impact of short-range forces on defect production from high-energy collisions. J Chem Theory Comput. 2016;12:2871–9.

    Article  Google Scholar 

  28. Lindhard J, Scharff M. Energy dissipation by ions in the kev Region. Phys Rev. 1961;124:128–30.

    Article  Google Scholar 

  29. Stoller RE, Greenwood LR. Subcascade formation in displacement cascade simulations: implications for fusion reactor materials. J Nucl Mater. 1999;271–272:57–62.

    Article  Google Scholar 

  30. Stoller RE, Odette GR, Wirth BD. Primary damage formation in bcc iron. J Nucl Mater. 1997;251:49–60.

    Article  Google Scholar 

  31. Ackland GJ, Mendelev MI, Srolovitz DJ, Han S, Barashev AV. Development of an interatomic potential for phosphorus impurities in -iron. J Phys Condens Matter. 2004;16:S2629–42.

    Article  Google Scholar 

  32. Mishin Y. Atomistic modeling of the γ and γ′-phases of the Ni–Al system. Acta Mater. 2004;52:1451–67.

    Article  Google Scholar 

  33. Mendelev MI, Ackland GJ. Development of an interatomic potential for the simulation of phase transformations in zirconium. Philos Mag Lett. 2007;87:349–59.

    Article  Google Scholar 

  34. Bacon DJ, Calder AF, Gao F, Kapinos VG, Wooding SJ. Computer simulation of defect production by displacement cascades in metals. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 1995;102:37–46.

    Article  Google Scholar 

  35. Becquart CS, Domain C. Molecular dynamics simulations of damage and plasticity: the role of ab initio calculations in the development of interatomic potentials. Philos Mag. 2009;89:3215–34.

    Article  Google Scholar 

  36. Stoller RE. Primary radiation damage formation. In: Comprehensive Nuclear Materials. Oxford: Elsevier; 2012. p. 293–332.

    Chapter  Google Scholar 

  37. Setyawan W, Selby AP, Juslin N, Stoller RE, Wirth BD, Kurtz RJ. Cascade morphology transition in bcc metals. J Phys Condens Matter. 2015;27:225402.

    Article  Google Scholar 

  38. Bacon DJ, Gao F, Osetsky YN. The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. J Nucl Mater. 2000;276:1–12.

    Article  Google Scholar 

  39. Zhang Y, Stocks GM, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun. 2015;6:8736.

    Article  Google Scholar 

  40. Béland LK, Osetsky YN, Stoller RE. The effect of alloying nickel with iron on the supersonic ballistic stage of high energy displacement cascades. Acta Mater. 2016;116:136–42.

    Article  Google Scholar 

  41. Zhao S, Velisa G, Xue H, Bei H, Weber WJ, Zhang Y. Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Mater. 2017;125:231–7.

    Article  Google Scholar 

  42. Crocombette J-P, Van Brutzel L, Simeone D, Luneville L. Molecular dynamics simulations of high energy cascade in ordered alloys: defect production and subcascade division. J Nucl Mater. 2016;474:134–42.

    Article  Google Scholar 

  43. Jumel S, Claude Van-Duysen J. INCAS: an analytical model to describe displacement cascades. J Nucl Mater. 2004;328:151–64.

    Article  Google Scholar 

  44. Hou M. Fuzzy clustering methods: an application to atomic displacement cascades in solids. Phys Rev A. 1989;39:2817–28.

    Article  Google Scholar 

  45. Chandrasekhar S. Stochastic problems in physics and astronomy. Rev Mod Phys. 1943;15:1–89.

    Article  MathSciNet  MATH  Google Scholar 

  46. De Backer A. work in progress.

    Google Scholar 

  47. Jumel S, Van-Duysen JC. RPV-1: a Virtual Test Reactor to simulate irradiation effects in light water reactor pressure vessel steels. J Nucl Mater. 2005;340:125–48.

    Article  Google Scholar 

  48. Norgett MJ, Robinson MT, Torrens IM. A proposed method of calculating displacement dose rates. Nucl Eng Des. 1975;33:50–4.

    Article  Google Scholar 

  49. ASTM E693. E 693 Annual Book of ASTM standards. Annu. Book ASTM Stand. 12.02.1994.

    Google Scholar 

  50. Stoller R, Calder A. Statistical analysis of a library of molecular dynamics cascade simulations in iron at 100 K. J Nucl Mater. 2000;283–287:746–52.

    Article  Google Scholar 

  51. Sand AE, Aliaga MJ, Caturla MJ, Nordlund K. Surface effects and statistical laws of defects in primary radiation damage: tungsten vs. iron. EPL Europhys Lett. 2016;115:36001.

    Article  Google Scholar 

  52. Sand AE, Dudarev SL, Nordlund K. High-energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws. EPL Europhys Lett. 2013;103:46003.

    Article  Google Scholar 

  53. Zarkadoula E, Duffy DM, Nordlund K, Seaton MA, Todorov IT, Weber WJ, Trachenko K. Electronic effects in high-energy radiation damage in tungsten. J Phys Condens Matter. 2015;27:135401.

    Article  Google Scholar 

  54. Race CP, Mason DR, Finnis MW, Foulkes WMC, Horsfield AP, Sutton AP. The treatment of electronic excitations in atomistic models of radiation damage in metals. Rep Prog Phys. 2010;73:116501.

    Article  Google Scholar 

  55. Björkas C, Nordlund K. Assessment of the relation between ion beam mixing, electron–phonon coupling and damage production in Fe. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2009;267:1830–6.

    Article  Google Scholar 

  56. Zarkadoula E, Daraszewicz SL, Duffy DM, Seaton MA, Todorov IT, Nordlund K, Dove MT, Trachenko K. Electronic effects in high-energy radiation damage in iron. J Phys Condens Matter. 2014;26:085401.

    Article  Google Scholar 

  57. Duffy DM, Khakshouri S, Rutherford AM. Electronic effects in radiation damage simulations. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2009;267:3050–4.

    Article  Google Scholar 

  58. Duffy DM, Rutherford AM. Including electronic effects in damage cascade simulations. J Nucl Mater. 2009;386–388:19–21.

    Article  Google Scholar 

  59. Samolyuk GD, Béland LK, Stocks GM, Stoller RE. Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling. J Phys Condens Matter. 2016;28:175501.

    Article  Google Scholar 

  60. Khakshouri S, Duffy DM. Influence of electronic effects on the surface erosion of tungsten. Phys Rev B. 2009. https://doi.org/10.1103/PhysRevB.80.035415.

  61. Phythian WJ, Stoller RE, Foreman AJE, Calder AF, Bacon DJ. A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J Nucl Mater. 1995;223:245–61.

    Article  Google Scholar 

  62. Gao F, Bacon DJ, Flewitt PEJ, Lewis TA. A molecular dynamics study of temperature effects on defect production by displacement cascades in α-iron. J Nucl Mater. 1997;249:77–86.

    Article  Google Scholar 

  63. Messina L, Nastar M, Sandberg N, Olsson P. Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron. Phys Rev B. 2016. https://doi.org/10.1103/PhysRevB.93.184302.

  64. Hasnaoui A, Van Swygenhoven H, Derlet P. On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation. Acta Mater. 2002;50:3927–39.

    Article  Google Scholar 

  65. Veiga RGA, Perez M, Becquart CS, Domain C, Garruchet S. Effect of the stress field of an edge dislocation on carbon diffusion in α -iron: coupling molecular statics and atomistic kinetic Monte Carlo. Phys Rev B. 2010. https://doi.org/10.1103/PhysRevB.82.054103.

  66. Al Tooq Z, Kenny SD. Modelling radiation damage at grain boundaries in fcc Nickel and Ni-based alloy using long time scale dynamics techniques. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2013;303:9–13.

    Article  Google Scholar 

  67. Capps N. Molecular dynamics simulations of cascade evolution near pre-existing defects. Masters Theses. University of Tennessee, 2013.

    Google Scholar 

  68. Satoh Y, Matsui H, Hamaoka T. Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation. Phys Rev B. 2008;97(9):638–656. https://doi.org/10.1103/PhysRevB.77.094135.

  69. Satoh Y, Sohtome T, Abe H, Matsukawa Y, Kano S. Athermal migration of vacancies in iron and copper induced by electron irradiation. Philos Mag. 2017;97:638–656.

    Article  Google Scholar 

  70. Korchuganov AV, Chernov VM, Zolnikov KP, Kryzhevich DS, Psakhie SG. MD simulation of primary radiation damage in metals with internal structure. Inorg Mater Appl Res. 2016;7:648–57.

    Article  Google Scholar 

  71. Osetsky Y, Bacon D. Atomic-scale modelling of primary damage and properties of radiation defects in metals. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2003;202:31–43.

    Article  Google Scholar 

  72. Nordlund K, Keinonen J, Ghaly M, Averback RS. Coherent displacement of atoms during ion irradiation. Nature. 1999;398:49–51.

    Article  Google Scholar 

  73. Stoller RE. The effect of free surfaces on cascade damage production in iron. J Nucl Mater. 2002;307–311:935–40.

    Article  Google Scholar 

  74. Aliaga MJ, Dopico I, Martin-Bragado I, Caturla MJ. Influence of free surfaces on microstructure evolution of radiation damage in Fe from molecular dynamics and object kinetic Monte Carlo calculations: influence of free surfaces on microstructure evolution of radiation damage in Fe. Phys Status Solidi A. 2016;213:2969–73.

    Article  Google Scholar 

  75. Masters BC. Dislocation loops in irradiated iron. Philos Mag. 1965;11:881–93.

    Article  Google Scholar 

  76. Yao Z, Hernández-Mayoral M, Jenkins ML, Kirk MA. Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: damage evolution in thin-foils at lower doses. Philos Mag. 2008;88:2851–80.

    Article  Google Scholar 

  77. Brimbal D, Décamps B, Henry J, Meslin E, Barbu A. Single- and dual-beam in situ irradiations of high-purity iron in a transmission electron microscope: effects of heavy ion irradiation and helium injection. Acta Mater. 2014;64:391–401.

    Article  Google Scholar 

  78. Xu H, Stoller RE, Osetsky YN, Terentyev D. Solving the puzzle of 〈100〉 interstitial loop formation in bcc iron. Phys Rev Lett. 2013. https://doi.org/10.1103/PhysRevLett.110.265503.

  79. Kirsanov VV, Kislitsin SB, Kislitsina EM. Atom – atom collision cascades in non-uniformly stressed metals. Philos Mag A. 1991;64:201–11.

    Article  Google Scholar 

  80. Gao F, Bacon D, Flewitt PE, Lewis T. The influence of strain on defect generation by displacement cascades in α-iron. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2001;180:187–93.

    Article  Google Scholar 

  81. Wang D, Gao N, Wang ZG, Gao X, He WH, Cui MH, Pang LL, Zhu YB. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2016;384:68–75.

    Article  Google Scholar 

  82. Beeler B, Asta M, Hosemann P, Grønbech-Jensen N. Effects of applied strain on radiation damage generation in body-centered cubic iron. J Nucl Mater. 2015;459:159–65.

    Article  Google Scholar 

  83. Chen Z, Kioussis N, Ghoniem N, Seif D. Strain-field effects on the formation and migration energies of self interstitials in α -Fe from first principles. Phys Rev B. 2010. https://doi.org/10.1103/PhysRevB.81.094102.

  84. Zolnikov KP, Korchuganov AV, Kryzhevich DS, Chernov VM, Psakhie SG. Structural changes in elastically stressed crystallites under irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2015;352:43–6.

    Article  Google Scholar 

  85. Stoller RE, Golubov SI, Domain C, Becquart CS. Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models. J Nucl Mater. 2008;382:77–90.

    Article  Google Scholar 

  86. Johnson MD, Caturla M-J, Díaz de la Rubia T. A kinetic Monte–Carlo study of the effective diffusivity of the silicon self-interstitial in the presence of carbon and boron. J Appl Phys. 1998;84:1963–7.

    Article  Google Scholar 

  87. Domain C, Becquart CS, Malerba L. Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J Nucl Mater. 2004;335:121–45.

    Article  Google Scholar 

  88. Soneda N, Ishino S, Takahashi A, Dohi K. Modeling the microstructural evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation. J Nucl Mater. 2003;323:169–80.

    Article  Google Scholar 

  89. Martin-Bragado I, Rivera A, Valles G, Gomez-Selles JL, Caturla MJ. MMonCa: an object Kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Comput Phys Commun. 2013;184:2703–10.

    Article  Google Scholar 

  90. Dalla Torre J, Bocquet J-L, Doan NV, Adam E, Barbu A. JERK, an event-based Kinetic Monte Carlo model to predict microstructure evolution of materials under irradiation. Philos Mag. 2005;85:549–58.

    Article  Google Scholar 

  91. Becquart CS, Soisson F. Kinetic Monte Carlo simulations of precipitation under irradiation. This Book.

    Google Scholar 

  92. Jourdan T, Crocombette J-P. Rate theory cluster dynamics simulations including spatial correlations within displacement cascades. Phys Rev B. 2012. https://doi.org/10.1103/PhysRevB.86.054113.

  93. Soneda N, de la Rubia TD. Defect production, annealing kinetics and damage evolution in α-Fe: an atomic-scale computer simulation. Philos Mag A. 1998;78:995–1019.

    Article  Google Scholar 

  94. Xu H, Osetsky YN, Stoller RE. Cascade annealing simulations of bcc iron using object kinetic Monte Carlo. J Nucl Mater. 2012;423:102–9.

    Article  Google Scholar 

  95. Nandipati G, Setyawan W, Heinisch HL, Roche KJ, Kurtz RJ, Wirth BD. Displacement cascades and defect annealing in tungsten, Part III: the sensitivity of cascade annealing in tungsten to the values of kinetic parameters. J Nucl Mater. 2015;462:345–53.

    Article  Google Scholar 

  96. Xu H, Stoller RE, Osetsky YN. Cascade defect evolution processes: comparison of atomistic methods. J Nucl Mater. 2013;443:66–70.

    Article  Google Scholar 

  97. Souidi A, Hou M, Becquart CS, Malerba L, Domain C, Stoller RE. On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J Nucl Mater. 2011;419:122–33.

    Article  Google Scholar 

  98. Becquart CS, Souidi A, Domain C, Hou M, Malerba L, Stoller RE. Effect of displacement cascade structure and defect mobility on the growth of point defect clusters under irradiation. J Nucl Mater. 2006;351:39–46.

    Article  Google Scholar 

  99. Domain C, Becquart CS, van Duysen JC. Kinetic Monte Carlo simulations of cascades in Fe alloys. MRS Online Proc Libr Arch. 2000. https://doi.org/10.1557/PROC-650-R3.25.

  100. Crocombette J-P, Jourdan T. Cell Molecular Dynamics for Cascades (CMDC): a new tool for cascade simulation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 2015;352:9–13.

    Article  Google Scholar 

  101. Ortiz CJ. work in progress.

    Google Scholar 

  102. Terentyev D, Lagerstedt C, Olsson P, Nordlund K, Wallenius J, Becquart CS, Malerba L. Effect of the interatomic potential on the features of displacement cascades in α-Fe: a molecular dynamics study. J Nucl Mater. 2006;351:65–77.

    Article  Google Scholar 

  103. Fikar J, Schäublin R. Molecular dynamics simulation of radiation damage in bcc tungsten. J Nucl Mater. 2009;386–388:97–101.

    Article  Google Scholar 

  104. Seidman DN. The direct observation of point defects in irradiated or quenched metals by quantitative field ion microscopy. J Phys F Met Phys. 1973;3:393–421.

    Article  Google Scholar 

  105. Ehrhart P. Investigation of radiation damage by X-ray diffraction. J Nucl Mater. 1994;216:170–98.

    Article  Google Scholar 

  106. Olsson P, Becquart CS, Domain C. Ab initio threshold displacement energies in iron. Mater Res Lett. 2016;4:219–25.

    Article  Google Scholar 

  107. Alexander R, Marinica M-C, Proville L, Willaime F, Arakawa K, Gilbert MR, Dudarev SL. Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium. Phys Rev B. 2016. https://doi.org/10.1103/PhysRevB.94.024103.

Download references

Acknowledgements

This work was partly supported within the European project SOTERIA (661913) and by CEA under the collaborative contract number V 3542.001 on fusion engineering issues. It contributes to the Joint Programme on Nuclear Materials (JPNM) of the European Energy Research Alliance (EERA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte S. Becquart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Becquart, C.S., De Backer, A., Domain, C. (2019). Atomistic Modeling of Radiation Damage in Metallic Alloys. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_21

Download citation

Publish with us

Policies and ethics