Skip to main content

Processes in Nano-Length-Scale Copper Crystal Under Dynamic Loads: A Molecular Dynamics Study

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 4456 Accesses

Abstract

This chapter is devoted to the research of rotary field formation in a nano-length-scale metal crystal under acting of different kinds of mechanical loads by molecular dynamics method. It was considered two sorts of loads: compressive dynamic load and stretching at a constant deformation velocity. The simulation technique of such vortex structures in solid was developed. It is shown that there exists a critical energy flux at which the system experiences an avalanche change both in the time and load dependence of energy absorption and in the type of wave processes in its structure. It was revealed that this process is a type of nanostructure self-organization in response to an external energy flux with subsequent development of a strong rotational field. The critical role of a rotary wave in the process of material fracture was defined, as the rotary wave energy exceeds 30% of the total internal energy of the structure at the strain rate greater than 200 m/s. The interpretation of vortex structure formation and spread in solids is proposed from the point of view of structure self-organization. The authors studied the structure size influence on rotary field formation, and it was revealed their appearance is not a result of nanoscale smallness of the sample. At the same time, the influence of a nanostructure’s cross size on the rotary field energy is being researched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panin VE, Egorushkin VE. Phys Mesomech. 2013;16(3):5–6.

    Article  Google Scholar 

  2. Eidel B, Hartmaier A, Gumbsch P. Multiscale Model Plast Fract Means Dislocat Mech CISM Int Centre Mech Sci. 2010;522:1–57.

    Google Scholar 

  3. Zhang L-Y, Li Y, Cao Y-P, Feng X-Q, Gao H. J Appl Mech. 2013;80(6). https://doi.org/10.1115/1.4023977061018.

  4. http://www.engin.brown.edu/Faculty/gao/gaogroup/publications.html

  5. D. Huang, M. Wang, G. Lu, J. Nanomater. 2014;7. https://doi.org/10.1155/2014/732434732434.

  6. Ravi-Chandar K. Dynamic fracture. Oxford: Elsevier; 2004. p. 219. ISBN: 0–08–044352-4

    Google Scholar 

  7. Egorushkin VE, Panin VE, Savushkin EV, Khon YA. Russ Phys J. 1987;30(1):5–16.

    Google Scholar 

  8. Korteveg DJ, de Vries G. Phil Mag. 1895;39(5):422–43.

    Article  Google Scholar 

  9. Egorushkin VE. Russ Phys J. 1992;35(4):316–34.

    Article  Google Scholar 

  10. Panin VE, Egorushkin VE, Panin AV. Physics-Uspekhi. 2012;55(12):1260–7.

    Article  Google Scholar 

  11. Golovnev IF, Golovneva EI, Merzhievsky LA, Fomin VM. Phys Mesomech. 2013;16(4):294–302.

    Article  Google Scholar 

  12. Golovnev IF, Golovneva EI, Merzhievsky LA. News Altai State Univ. 2014;1(81):40–2. https://doi.org/10.14258/izvasu(2014)1.1-08.

    Article  Google Scholar 

  13. Golovnev IF, Golovneva EI, Merzhievsky LA, Fomin VM, Panin VE. Phys Mesomech. 2015;18(3):179–86.

    Article  Google Scholar 

  14. A.F. Voter. Embedded atom method potentials for seven FCC metals: Ni, Pd, Pt, Cu, Ag, Au, and Al, Los Alamos unclassified technical report # LA-UR 93-3901. 1993.

    Google Scholar 

  15. Golovnev IF, Golovneva EI, Fomin VM. Phys Mesomech. 2003;6(5–6):41–5.

    Google Scholar 

  16. Golovneva EI, Golovnev IF, Fomin VM. Comput Mater Sci. 2015;97:109–15.

    Article  Google Scholar 

  17. Roco MC, Williams RS, Alivisatos P, editors. Nanotechnology research directions: IWGN workshop report. Vision for nanotechnology R&D in the next decade. Dordrecht/ Boston/London: Kluwer Academic; 2000.

    Google Scholar 

  18. Zhuo XR, Beom HG. Materials science and engineering A-structural materials properties microstructure and processing. 2015;636:470–75.

    Google Scholar 

  19. Sadeghian H, Goosen JFL, Bossche A, Thijsse BJ, van Keulen F. Effects of size and surface on the elasticity of silicon nanoplates: molecular dynamics and semi-continuum approaches. Thin Solid Films. 2011;520(I.1):391–9. https://doi.org/10.1016/j.tsf.2011.06.049.

    Article  Google Scholar 

  20. Huang D, Qiao P. Mechanical behavior and size sensitivity of Nanocrystalline nickel wires using molecular dynamics simulation. J Aerosp Eng. 2011;24(I.2):147–53. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000006.

    Article  Google Scholar 

  21. Tang T, Kim S, Horstemeyer MF, Wang P. Atomistic modeling of crack growth in magnesium single crystal. Eng Fract Mech. 2011;78(I.1):191–2011. https://doi.org/10.1016/j.engfracmech.2010.11.009.

    Article  Google Scholar 

  22. Tang T, Kim S, Horstemeyer M F, Wang P. A molecular dynamics study of fracture behavior in magnesium single crystal. In: Magnesium technology. Book Series: Magnesium Technology Series. Conference: Conference on Magnesium Technology held during TMS 140th Annual Meeting and Exhibition; 2011. p. 349–55.

    Google Scholar 

  23. Tang T, Kim S, Horstemeyer MF. Molecular dynamics simulations of void growth and coalescence in single crystal magnesium. Acta Mater. 2010;58(I.14):4742–59. https://doi.org/10.1016/j.actamat.2010.05.011.

    Article  Google Scholar 

  24. Sadeghian H, Yang Chung-Kai, Goosen, JFL, Bossche A, Staufer U, French PJ, van Keulen F. Effects of size and defects on the elasticity of silicon nanocantilevers. J Micromech Microeng. Conference: 20th Micromechanics Europe Workshop (MME 09). 2010;20 I.6:064012. https://doi.org/10.1088/0960-1317/20/6/064012.

    Article  Google Scholar 

  25. Sadeghian H, Goosen JFL, Bossche A, Thijsse BJ, van Keulen F. Size-dependent elastic behavior of silicon nanofilms: molecular dynamics study. In: IMECE 2009: Proceedings of the ASME International Mechanical Engineering Congress and Exposition. 2010;12 parts A and B:151–6.

    Google Scholar 

  26. I-Ling C, Yu-Chiao C. Is the molecular statics method suitable for the study of nanomaterials? A study case of nanowires. Nanotechnology. 18(I.31):315701. https://doi.org/10.1088/0957-4484/18/31/315701.

    Article  Google Scholar 

  27. Golovnev IF, Golovneva EI, Fomin VM. The influence of a nanocrystal size on the results of molecular-dynamics modeling. Comput Mater Sci. 2006;36:176–9. https://doi.org/10.1016/j.commatsci.2004.12.082.

    Article  Google Scholar 

  28. Potirniche GP, Horstemeyer MF, Wagner GJ, Gullett PM. A molecular dynamics study of void growth and coalescence in single crystal nickel. Int J Plast. 2006;22(I.2):257–78. https://doi.org/10.1016/j.ijplas.2005.02.001.

    Article  Google Scholar 

  29. Wu HA, Soh AK, Wang XX, Sun ZH. Strength and fracture of single crystal metal nanowire. In: Kishimoto K et al., editor. Advances in fracture and failure prevention. Conference. Book Series: Key engineering materials. 2004;p. 261–263. Part 1&2:33–8.

    Google Scholar 

  30. Golovnev IF, Golovneva EI, Fomin VM. Comput Mater Sci. 2015;110:302–7.

    Article  Google Scholar 

  31. Golovnev IF, Golovneva EI, Merzhievsky LA. Phys Mesomech. 2016;19(5):66–72. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Golovneva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Golovnev, I.F., Golovneva, E.I. (2019). Processes in Nano-Length-Scale Copper Crystal Under Dynamic Loads: A Molecular Dynamics Study. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_20

Download citation

Publish with us

Policies and ethics