Skip to main content

Mechanical Properties of Nanostructured Metals: Molecular Dynamics Studies

  • Reference work entry
  • First Online:

Abstract

This chapter overviews our recent work on MD simulations of the mechanical properties of nanostructured metals with an emphasis on revealing the controlling deformation mechanisms, interpreting the experimental data, and guiding further research in structural optimization and processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koch CC, Morris DG, Lu K, Inoue A. MRS Bull. 1999;24:54.

    Google Scholar 

  2. Gleiter H. Acta Mater. 2000;48:1.

    Article  Google Scholar 

  3. Argon AS, Yip S. Phil Mag Lett. 2006;86:713.

    Article  Google Scholar 

  4. Meyers MA, Mishra A, Benson DJ. Prog Mater Sci. 2006;51:427.

    Article  Google Scholar 

  5. Van Swygenhoven H, Spaczer M, Caro A, Farkas D. Phys Rev B. 1999;60:22.

    Article  Google Scholar 

  6. Zhu T, Li J, Samanta A, Leach A, Gall K. Phys Rev Lett. 2008;100:025502.

    Article  Google Scholar 

  7. Weinberger CR, Cai W. J Mech Phys Solids. 2010;58:1011.

    Article  Google Scholar 

  8. Dai S, Xiang Y, Srolovitz DJ. Acta Mater. 2014;69:162.

    Article  Google Scholar 

  9. Karaman I, Sehitoglu H, Gall K, Chumlyakov YI, Maier HJ. Acta Mater. 2000;48:1345.

    Article  Google Scholar 

  10. Chen M, Ma E, Hemker K, Sheng H, Wang Y, Cheng X. Science. 2003;300:275.

    Google Scholar 

  11. Lu L, Shen Y, Chen X, Qian L, Lu K. Science. 2004;304:422.

    Article  Google Scholar 

  12. Zhang X, Misra A, Wang H, Nastasi M, Embury JD, Mitchell TE, Hoagland RG. Appl Phys Lett. 2004;84:1096.

    Article  Google Scholar 

  13. Lu K, Lu L, Suresh S. Science. 2009;324:349.

    Article  Google Scholar 

  14. Hodge AM, Wang YM, Barbee TW Jr. Scripta Mater. 2008;59:163.

    Article  Google Scholar 

  15. Tian Y, et al. Nature. 2013;493:385.

    Article  Google Scholar 

  16. Wang YM, Sansoz F, Lagrange T, Ott RT, Marian J, Barbee TW Jr, Hamza AV. Nature Mater. 2013;12:697.

    Article  Google Scholar 

  17. Huang Q, et al. Nature. 2014;510:250.

    Article  Google Scholar 

  18. Wei YJ, et al. Nat Commun. 2014;5:3580.

    Article  Google Scholar 

  19. Shin YA, et al. Nat Commun. 2016;7:10772.

    Article  Google Scholar 

  20. Li XY, Wei YJ, Lu L, Lu K, Gao HJ. Nature. 2010;464:877.

    Article  Google Scholar 

  21. Lu L, Chen X, Huang X, Lu K. Science. 2009;323:607.

    Article  Google Scholar 

  22. Jang D, Li XY, Gao HJ, Greer JR. Nature. Nanotechnol. 2012;7:594.

    Google Scholar 

  23. Bufford D, Wang H, Zhang X. Acta Mater. 2011;59:93.

    Article  Google Scholar 

  24. You ZS, Lu L, Lu K. Acta Mater. 2011;59:6927.

    Article  Google Scholar 

  25. You ZS, Li XY, Gui LJ, Lu QH, Zhu T, Gao HJ, Lu L. Acta Mater. 2013;61:217.

    Article  Google Scholar 

  26. Misra A, Hirth JP, Hoagland RG. Acta Mater. 2005;53:4817.

    Article  Google Scholar 

  27. Li YP, Zhang GP. Acta Mater. 2010;58:3877.

    Article  Google Scholar 

  28. Zhou HF, Li XY, Qu SX, Yang W, Gao HJ. Nano Lett. 2014;14:5075.

    Article  Google Scholar 

  29. Qu SX, Zhou HF. Nanotechnology. 2010;21:335704.

    Article  Google Scholar 

  30. Was GS, Foecke T. Thin Solid Films. 1996;286:1.

    Article  Google Scholar 

  31. Nix WD. Scripta Mater. 1998;39:545.

    Article  Google Scholar 

  32. Mishin Y, et al. Phys Rev B. 2001;63:224106.

    Article  Google Scholar 

  33. Qin EW, Tao NR, Lu K. Scripta Mater. 2009;60:539.

    Article  Google Scholar 

  34. Singh A, Tang L, Dao M, Lu L, Suresh S. Acta Mater. 2011;59:2437.

    Article  Google Scholar 

  35. Dao M, Lu L, Shen YF, Suresh S. Acta Mater. 2006;54:5421.

    Article  Google Scholar 

  36. Zhou HF, Qu SX, Yang W. Model Simul Mater Sci Eng. 2010;18:065002.

    Article  Google Scholar 

  37. Zhou HF, Li XY, Wang Y, Liu ZS, Yang W, Gao HJ. Nano Lett. 2015;15:6082.

    Article  Google Scholar 

  38. Wang J, et al. Acta Mater. 2010;58:2262.

    Article  Google Scholar 

  39. Li B, Sui M, Ma E, Mao S. Phys Rev Lett. 2009;102:205504.

    Article  Google Scholar 

  40. Johnson WL. MRS Bull. 1999;24:42.

    Article  Google Scholar 

  41. Ashby MF, Greer AL. Scripta Mater. 2006;54:321.

    Article  Google Scholar 

  42. Inoue A, Shen BL, Koshiba H, Kato H, Yavari AR. Nature Mater. 2003;11:661.

    Article  Google Scholar 

  43. Schroers J, Johnson WL. Phys Rev Lett. 2004;93:255506.

    Article  Google Scholar 

  44. Chen MW, Inoue A, Zhang W, Sakurai T. Phys Rev Lett. 2006;96:245502.

    Article  Google Scholar 

  45. Chen LY, et al. Scripta Mater. 2008;59:75.

    Article  Google Scholar 

  46. Chen LY, et al. Phys Rev Lett. 2008;100:075501.

    Article  Google Scholar 

  47. Hays CC, Kim CP, Johnson WL. Phys Rev Lett. 2000;84:2901.

    Article  Google Scholar 

  48. Hofmann DC, et al. Nature. 2008;451:1085.

    Article  Google Scholar 

  49. Wang YM, Li J, Hamza AV, Barbee TW Jr. Proc Natl Acad Sci. 2007;104:11155.

    Article  Google Scholar 

  50. Zhou HF, Qu SX, Yang W. Inter J Plast. 2013;44:147.

    Article  Google Scholar 

  51. Murali P, Guo TF, Zhang YW, Narasimhan R, Li Y, Gao HJ. Phys Rev Lett. 2011;107:215501.

    Article  Google Scholar 

  52. Ohkubo T, Nagahama D, Mukai T, Hono K. J Mater Res. 2007;22:1406.

    Article  Google Scholar 

  53. Das J, et al. Phys Rev Lett. 2005;94:205501.

    Article  Google Scholar 

  54. Yokoyama Y, Yamano K, Fukaura K, Sunada H, Inoue A. Scripta Mater. 2001;44:1529.

    Article  Google Scholar 

  55. Yokoyama Y. J Non-Cryst Solids. 2003;316:104.

    Article  Google Scholar 

  56. Yokoyama Y, Fukaura K, Inoue A. Intermetallics. 2002;10:1113.

    Article  Google Scholar 

  57. Cao QP, et al. Acta Mater. 2010;58:1276.

    Article  Google Scholar 

  58. Zhou HF, et al. Acta Mater. 2014;68:32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxing Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, H., Qu, S. (2019). Mechanical Properties of Nanostructured Metals: Molecular Dynamics Studies. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_19

Download citation

Publish with us

Policies and ethics