Abstract
Hierarchical materials represent a new, promising direction of the materials development, inspired by biological materials and allowing the creation of multiscale materials design and multiple functionalities and achieving extraordinary material properties. In this article, a short overview of possible applications and perspectives on hierarchical materials is given. Several examples of the modeling of strength and damage in hierarchical materials are summarized. The main areas of research in micromechanics of hierarchical materials are identified, among them, the investigations of the effects of load redistribution between reinforcing elements at different scale levels, possibilities to control different material properties and to ensure synergy of strengthening effects at different scale levels and using the nanoreinforcement effects.
Keywords
- Hierarchical Materials
- Nanoreinforcement Effect
- Secondary Nanoparticles
- Microfibril Angle (MFA)
- Unit Cell Method
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
References
Mishnaevsky L Jr. Computational mesomechanics of composites. Wiley, Chichester, 2007. 280 pp.
Mishnaevsky L Jr, Tsapatsis M. Hierarchical materials: background and perspectives. MRS Bulletin on “Hierarchical Materials”, MRS Bulletin. 2016; 41: 661–4.
Kanzaki S, Shimada M, Komeya K, Tsuge A. Recent progress in the synergy ceramics project. Key Eng Mater. 1999;161–163:437–42.
Lakes R. Materials with structural hierarchy. Nature. 1993;361:511–5.
Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52(8):1263–334.
Weinkamer R, Fratzl P. Solving conflicting functional requirements by hierarchical structuring – Examples from biological materials. MRS Bulletin on “Hierarchical Materials”. 2016; 41: 667–71.
Bekyarova E, Thostenson ET, Yu A, Kim H, Gao J, Tang J, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir. 2007;23(7):3970–4. E. Bekyarova et al., Functionalized single-walled carbon nanotubes for carbon fiber–epoxy composites, J Phys Chem C 111 (2007), pp. 17865–17871.
Sidorenko D, Mishnaevsky L Jr, et al. Hierarchical machining materials and their performance. MRS Bulletin on “Hierarchical Materials”. 2016; 41: 678–82.
Schmauder S, Mishnaevsky L Jr. Micromechanics and nanosimulation of metals and composites. Springer; Heidelberg, 2008. 420 pp.
Newman WI, Gabrielov AM. Failure of hierarchical distributions of fiber bundles. Int J Fract. 1991;50(1):1–15.
Daniels HE. The statistical theory of the strength of bundles of threads. Proc R Soc Lond. 1945;183(A995):405–35.
Mishnaevsky L Jr. Hierarchical composites: analysis of damage evolution based on fiber bundle model. Compos Sci Technol. 2011;71(4):450–60.
Yao H, Gao H. Multi-scale cohesive laws in hierarchical materials. Int J Solids Struct. 2007;44(25–26):8177–93.
Wu MS. Strategies and challenges for the mechanical modeling of biological and bio-inspired materials. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2010.11.012.
Buehler MJ. Multiscale mechanics of biological and biologically inspired materials and structures. Acta Mech Solida Sin. 2010;23(6):471–83.
Sarikaya M. Biomimetics: materials fabrication through biology. Proc Natl Acad Sci U S A. 1999;96:14183–5.
Katti KS, Katti DR, Pradhan SM, Bhosle A. Platelet interlocks are the key to toughness and strength in nacre. J Mater Res. 2005;20(5):1097–100.
Meyers MA, et al. Biological materials: a materials science approach. J Mech Behav Biomed Mater. 2011;4(5):626–57.
Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H. Fiber texture and mechanical graded structure of bamboo. Compos Part B. 1997;28(1–2):13–20.
Ramachamndra Rao P. Biomimetics. Sadhana. 2003;28(3–4):657–76.
Katti KS, Katti DR. Why is nacre so tough and strong? Mater Sci Eng C. 2006;26(8):1317–24.
Currey JD. Mechanical properties of mother of pearl in tension. Proc R Soc Lond. 1977;196:443. Jackson AP, Vincent JFV, Turner RM. The mechanical design of nacre. Proc R Soc Lond 1988;234:415.
Katti DR, Katti KS, Sopp JM, Sarikaya M. 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites. Comput Theor Polym Sci. 2001;11(5):397–404.
Nukala PKVV, Simunovic S. A continuous damage random thresholds model for simulating the fracture behavior of nacre. Biomaterials. 2005;26(30):6087–98.
Barthelat F, Tang H, Zavattieri PD, Li C-M, Espinosa HD. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids. 2007;55(2):306–37.
Bertoldi K, Bigoni D, DruganNacre WJ. An orthotropic and bimodular elastic material. Compos Sci Technol. 2008;68(6):1363–75.
Rhoa J-Y. Mechanical properties of hard tissues. In: Jürgen Buschow KH, et al, editors. Encyclopedia of materials: science and technology. Elsevier; 2001. p. 3723–28.
Fritsch A, Hellmich C, Dormieux L. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol. 2009;260(2):230–52.
Hellmich C, Fritsch A, Dormieux L. Universal microstructural patterns in bone: micromechanics-based prediction of anisotropic material behavior. J Biomech. 2006;39(Suppl 1):S416–7.
Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech. 2009;42(3):249–56.
Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech. 2000;33(12):1575–83.
Qing H, Mishnaevsky Jr L. Fatigue modeling of materials with complex microstructures. Comput Mater Sci. 2011;50(5):1644–50.
Hofstetter K, Hellmich C, Eberhardsteiner J. Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A-Solid. 2005;24:1030–53.
Hofstetter K, Hellmich C, Eberhardsteiner J. Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung. 2007;61:343–51.
Astley RJ, Harrington JJ, Stol KA. Mechanical modelling of wood microstructure: an engineering approach. Ipenz Trans. 1997;24:21–9.
Astley RJ, Stol KA, Harrington JJ. Modelling the elastic properties of softwood– part II: the cellular microstructure. Holz Roh Werkst. 1998;56:43–50.
Bergander A, Salmen L. Variations in transverse fibre wall properties: relations between elastic properties and structure. Holzforschung. 2000;54:654–60.
Bergander A, Salmen L. Cell wall properties and their effects on the mechanical properties of fibres. J Mater Sci. 2002;37:151–6.
Perré P. Wood as a multi-scale porous medium: observation, experiment, and modelling. In: Keynote lecture, 1st international conference of European society for wood mechanics, Lausanne; 2001. p. 403–22.
Mishnaevsky L Jr, Qing H. Micromechanical modelling of mechanical behaviour and strength of wood: state-of-the-art review. Comput Mater Sci. 2008;44(2):363–70.
Qing H, Mishnaevsky Jr L. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mech Mater. 2009;41(9):1034–49.
Mishnaevsky Jr L, et al. Strength and reliability of wood for the components of low-cost wind turbines: computational and experimental analysis and applications. J Wind Eng. 2009;33(2):183–96.
Qing H, Mishnaevsky Jr L. 3D multiscale micromechanical model of wood: from annual rings to microfibrils. Int J Solids Struct. 2010;47(9):1253–67.
Qing H, Mishnaevsky Jr L. 3D constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms. Comput Mater Sci. 2010;50(2):479–86.
Studart AR, Erb RM, Libanori R. In: Kim C-S, et al, editors. Hybrid and hierarchical composite materials, Springer; 2015. p. 287.
Bouville F, Maire E, Meille S, de Moortele VB, Stevenson AJ, Deville S. Nat Mater. 2014;13(5):508–14.
Libanori R, Munch FHL, Montenegro DM, Studart AR. Compos Sci Technol. 2012;72(3):435–45.
Godara A, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon. 2009;47(12):2914–23.
Wicks SS, de Villoria RG, Wardle BL. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos Sci Technol. 2010;70(1):20–8.
Iwahori Y, Ishiwata S, Ishikawa T. Mechanical properties of CFRP using CNF (Carbon Nano-Fiber) dispersed resin. In: Proceedings ICCM-14, San Diego; 2003.
Zhu J, et al. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Compos Sci Technol. 2007;67(7–8):1509–17.
Dzenis Y. Materials science: structural nanocomposites. Science. 2008;319(5862):419–20.
Carpinteri A, Paggi M. A top-down approach for the prediction of hardness and toughness of hierarchical materials. Chaos, Solitons Fractals. 2009;42(4):2546–52.
Pugno N, Carpinteri A. Design of micro-nanoscale bio-inspired hierarchical materials. Philos Mag Lett. 2008;88:397–405.
Joshi SP, Ramesh KT. An enriched continuum model for the design of a hierarchical composite. Scr Mater. 2007;57(9):877–80.
Habibi MK, Joshi SP, Gupta M. Hierarchical magnesium nano-composites for enhanced mechanical response. Acta Mater. 2010;58(18):6104–14.
Song M, He YH, Wu ZG, Huang BY. Multi-scale model for the ductility of multiple phase materials. Mech Mater. 2009;41(5):622–33.
Niihara K, Nakahira A, Sekino T. In: Komarneni S, Parker JC, Thomas GJ, editors. Nanophase and Nanocomposite Materials Symposium. Materials Research Society; 1993.
Zhang Z, Chen DL. Prediction of fracture strength in Al2O3/SiCp ceramic matrix nanocomposites. Sci Technol Adv Mater. 2007;8(1–2):5–10.
Choi SM, Awaji H. Nanocomposites – a new material design concept. Sci Technol Adv Mater. 2005;6(1):2–10.
Awaji H, Choi SM, Yagi E. Mechanisms of toughening and strengthening in ceramic-based nanocomposites. Mech Mater. 2002;34(7):411–22.
Sternitzke M. Structural ceramic nanocomposites. J Eur Ceram Soc. 1997;17(9):1061–82.
Bekyarova E, et al. Multiscale carbon nanotube−carbon fiber reinforcement for advanced epoxy composites. Lang Des. 2007;23(7):3970–4.
Mishnaevsky Jr L, Brøndsted P. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: a review. Comput Mater Sci. 2009;44(4):1351–9.
Jiang LY, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang KC, Li B. A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids. 2006;54(11):2436–52.
Shokrieh MM, Rafiee R. Stochastic multi-scale modeling of CNT/polymer composites. Comput Mater Sci. 2010;50(2):437–46.
Odegard GM, Gates TS, Wise KE, Park C, Siochi EJ. Constitutive modeling of nanotube–reinforced polymer composites. Compos Sci Technol. 2003;63(11):1671–87.
Luo JJ, Daniel IM. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol. 2003;63:1607–16.
de Villoria RG, Miravete A. Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 2007;55(9):3025–31.
Dai GM, Mishnaevsky Jr L. Carbone nanotube reinforced hybrid composites: computational modelling of environmental fatigue and their usability for wind blades. Compos Part B. 2015;78:349–60.
Dai GM, Mishnaevsky L Jr. Fatigue of multiscale composites with secondary nanoplatelet reinforcement: 3D computational analysis. Compos Sci Technol. 2014;91:71–81.
Zhou HW, Yi HY, Liu YQ, Hu X, Warrier A, Dai GM, Mishnaevsky L Jr. Carbon fiber/carbon nanotube based hierarchical composites: effect of CNT distribution on shearing strength. Compos Part B. 2016;88:201–11.
Mishnaevsky L Jr, Dai G. Hybrid and hierarchical nanoreinforced polymer composites: computational modelling of structure-properties relationships. Compos Struct. 2014;117:156–68.
Peng RD, et al. Modeling of nano-reinforced polymer composites: microstructure effect on the Young’s modulus. Comput Mater Sci. 2012;60:19–31.
Dai GM, Mishnaevsky L Jr. Graphene monolayer nanocomposites: 3D simulation of damage and fracture. Comput Mater Sci. 2014;95:684–92.
Zhang H, et al. Integrated damage sensing in fibre-reinforced composites with extremely low carbon nanotube loadings. J Nanomater. 2015;2015:ID785834.
Kang I, et al. A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct. 2006;15:737–48.
Wood JR, et al. Carbon nanotubes: from molecular to macroscopic sensors. Phys Rev B. 2000;62:7571.
Fiedler B, Gojny FH, Wichmann MHG, Bauhofer W, Schulte K. Can carbon nanotubes be used to sense damage in composites. Annal de Chim-Sci des Materiaux 2004;29(6):81–94.
Smart anti-icing system for rotor blades. Research News / 1.12.2014.
U.S. Patent Application 20100134946; Carbon nanotubes used to form improved lightning strike protection for wind turbines, 36.2010, U.S. Patent Application 20100134946.
Li C, Thostenson ET, Chou TW. Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol. 2008;68(6):1227–49.
Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 2008;56(13):2929–36.
Grabowski K, et al. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach. In: Proceedings SPIE 9803, Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2016, 98030O (April 20, 2016); https://doi.org/10.1117/12.2219275
Li C, Chou TW. Modeling of damage sensing in fiber composites using carbon nanotube networks. Compos Sci Technol. 2008;68(15–16):3373–9.
Franzen M, et al. Naturfaserverstärkte Spritzgießmaterialien für den praktischen Einsatz in der Automobilindustrie. Vortrag: 4a Technologietag 2014. Schladming, 25 Feb 2014.
Akampumuza O, et al. Review of the applications of biocomposites in the automotive industry. Polym Compos. 2016. https://doi.org/10.1002/pc.23847.
Löwer C. Die neue Holzklasse. PM. 2012; 12: 92–8. see also http://www.projekt-hammer.de/.
Roy SB, et al. A review on biocomposites. Int J Innov Res Sci Eng Technol. 2014; 3(10):27–37.
Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 2010;17(3):459–94.
Berglund LA, Pejs T. MRS Bull. 2010;35:201.
Okubo K, Fujii T, Yamashita N. Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Ser A. 2005;48(4):199–204.
Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, et al. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules. 2008;9:1643. J. Juntaro et al, Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites, Compos. Interfaces 14, 753 (2007).
Aitomaki Y, Oksman K. Reinforcing efficiency of nanocellulose in polymers. React Funct Polym. 2014;85(SI):151–6.
Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol. 2014;105:15–27.
Jogi BF, et al. Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: a review. J Encapsulation Adsorpt Sci. 2012;2:69–78.
Aström. Elasticity of Poissonian fiber networks. Physical Review E. The American physical society. 2000;61(5):5550.
Favier V, Canova GR, Shrivastava SC, Cavaille JY. Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci. 1997;37(10):1732–9.
Denoyelle Th. Mechanical properties of materials made of nano-cellulose. KTH Degree; Stockholm, 2011.
Josefsson G, et al. Stiffness contribution of cellulose nanofibrils to composite materials. Int J Solids Struct. 2014;51:945.
Mishnaevsky L Jr, Madsen B, Aitomäki Y. Computational simulations of nanocellulose reinforced polymers. EU FoF.NMP.2013-10 project INCOM. Report Deliverable D6.5; 2016. 19 pp.
Sidorenko D, et al. Carbon nanotube reinforced metal binders for diamond cutting tools. Mater Des. 2015;83:536–44.
Loginov P, Mishnaevsky Jr L, Levashov E, Petrzhik M. Diamond and CBN hybrid and nanomodified cutting tools with enhanced performances: development, testing and modelling. Mater Des. 2015;88:310–9.
Song F, Bai YL. Effects of nanostructures on the fracture strength of the interfaces in nacre. J Mater Res. 2003;18(8):1741–4.
Song F, Soh AK, Bai YL. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials. 2003;24:3623–31.
Mishnaevsky L Jr, et al. Nanostructured titanium based materials for medical implants: modeling and development. Mater Sci Eng R Rep. 2014;81:1–19.
Liu HS, Mishnaevsky L Jr. Gradient ultrafine-grained titanium: computational study of mechanical and damage behavior. Acta Mater. 2014;71:220–33.
Mishnaevsky L Jr, Dai GM. Hybrid carbon/glass fiber composites: micromechanical analysis of structure-damage resistance relationship. Comput Mater Sci. 2014;81:630–40.
Blaker J, Lee KY, Bismarck A. Hierarchical composites made entirely from renewable resources. J Biobased Mater Bioenergy. 2011;5:1–16.
Mishnaevsky L Jr. Nanostructured interfaces for enhancing mechanical properties of materials: computational micromechanical studies. Compos Part B. 2015;68:75–84.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this entry
Cite this entry
Mishnaevsky Jr., L. (2018). Micromechanics of Hierarchical Materials: Modeling and Perspectives. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_78-1
Download citation
DOI: https://doi.org/10.1007/978-981-10-6855-3_78-1
Received:
Accepted:
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-6855-3
Online ISBN: 978-981-10-6855-3
eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering