Skip to main content

Defect Accumulation in Nanoporous Wear-Resistant Coatings Under Collective Recrystallization: Simulation by Hybrid Cellular Automaton Method

  • Living reference work entry
  • First Online:
Book cover Handbook of Mechanics of Materials

Abstract

A modification of a multiscale hybrid discrete-continual approach of excitable cellular automata is developed. The new version of the method is accomplished by considering the porosity and nanocrystalline structure of a material and the algorithms of calculation of local force moments and angular velocities of microscale rotations. The excitable cellular automata method was used to carry out numerical experiment (NE) for heating of continuous and nanoporous specimens with nanocrystalline TiAlC coatings. The numerical experiments have shown that nanoporosity allows to substantially reduce the rate of collective crystallization. In so doing the nanoporosity slowed down propagation of the heat front in the specimens. This fact can play both positive and negative roles at deposition of the coatings and their further use. On the one hand, by slowing the heat front propagation, one can significantly reduce the level of thermal stresses in deeper layers of the material. On the other hand, such deceleration in case of the high value of the thermal expansion coefficient can give rise to the formation of large gradients of thermal stress, which initiate nucleation and rapid growth of a main crack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Radovic M, Barsoum M. MAX phases: bridging the gap between metals and ceramics. Am Ceram Soc Bull. 2013;92:20–7.

    Google Scholar 

  2. Levashov E, Merzhanov A, Shtansky D. Advanced technologies, materials and coatings developed in scientific-educational center of SHS. Galvanotechnik. 2009;9:1–13.

    Google Scholar 

  3. Lin JP, Zhao LL, Li GY, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys. Intermetallics. 2001;19:131–6.

    Article  Google Scholar 

  4. Voevodin AA, Zabinski JS. Nanocomposite and nanostructured tribological materials for space applications. Compos Sci Technol. 2006;65:741–8.

    Google Scholar 

  5. Kartavykh AV, Kaloshkin SD, Cherdyntsev VV, et al. Application of microstructured intermetallides in turbine manufacture. Part 1: present state and prospects (a review). Inorg Mater Appl Res. 2013;4:12–20.

    Article  Google Scholar 

  6. Voevodin AA, Zabinski JS, Muratore C. Recent advances in hard, tough, and low friction nanocomposite coatings. Tsinghua Sci Technol. 2005;10:665–79.

    Article  Google Scholar 

  7. Shtansky D, Kiryukhantsev-Korneev P, Sheveyko A, et al. Comparative investigation of TiAlC(N), TiCrAlC(N), and CrAlC(N) coatings deposited by sputtering of MAX-phase Ti2−xCrxAlC targets. Surf Coat Technol. 2009;203:3595–609.

    Article  Google Scholar 

  8. Pearson J, Zikry M, Wahl K. Microstructural modeling of adaptive nanocomposite coatings for durability and wear. Wear. 2009;266:1003–12.

    Article  Google Scholar 

  9. Appel F, Heaton J-D. Gamma titanium aluminide alloys: science and technology. Weinheim: Wiley-VCH; 2011.

    Book  Google Scholar 

  10. Ying G, Wang X. Numerical simulation of the SHS temperature fields of al-Ti-C system based on plane propagating pattern. Int J Mod Phys C. 2009;20:1087.

    Article  MATH  Google Scholar 

  11. Ying G, He X, Du S-Y, et al. Kinetics and numerical simulation of self-propagating high-temperature synthesis in Ti–Cr–al–C systems. Rare Metals. 2014;33:527–33.

    Article  Google Scholar 

  12. Panin VE. Physical mesomechanics of heterogeneous media and computer-aided design of materials. Cambridge: Cambridge International Science Publ; 1998.

    Google Scholar 

  13. Panin VE, Egorushkin VE. Curvature solitons as generalized structural wave carriers of plastic deformation and fracture. Phys Mesomech. 2013;16:267–86.

    Article  Google Scholar 

  14. Panin VE, Egorushkin VE, Panin AV. The plastic shear channeling effect and the nonlinear waves of localized plastic deformation and fracture. Phys Mesomech. 2010;13:215–32.

    Article  Google Scholar 

  15. Panin VE, Egorushkin VE, Panin AV. Physical Mesomechanics of a deformed solid as a multilevel system. I. Physical fundamentals of the multilevel approach. Phys Mesomech. 2006;9:9–20.

    Google Scholar 

  16. Egorushkin VE. Dynamics of plastic deformation. Localized inelastic strain waves in solids. In: Physical Mesomechanics of heterogeneous media and computer-aided Design of Materials. Cambridge: Cambridge Interscience Publishing; 1998. p. 41–6.

    Google Scholar 

  17. Egorushkin VE. Dynamics of plastic deformation: waves of localized plastic deformation in solids. Russ Phys J. 1992;35:316–34.

    Article  Google Scholar 

  18. Zuev LB, Barannikova SA. Evidence for the existence of localized plastic flow auto-waves generated in deforming metals. Nat Sci. 2010;2:476–83.

    Google Scholar 

  19. Zuev LB, Danilov VI, Gorbatenko VV. Autowaves of localized plastic deformation. Zhurn Tekh Fiz. 1995;65:91–103.

    Google Scholar 

  20. Zuev LB. Wave phenomena in low-rate plastic flow in solids. Ann Phys. 2001;10:965–84.

    Article  Google Scholar 

  21. Panin VE, Egorushkin VE, Panin AV. Nonlinear wave processes in a deformable solid as in a multiscale hierarchically organized system. Physics-Uspekhi. 2012;55:1260–7.

    Article  Google Scholar 

  22. Panin AV. Nonlinear waves of localized plastic flow in nanostructured surface layers of solids and thin films. Phys Mesomech. 2005;8:5–15.

    Google Scholar 

  23. Romanova VA, Balokhonov RR, Emelyanova OS. On the role of internal interfaces in the development of mesoscale surface roughness in loaded materials. Phys Mesomech. 2011;14:159–66.

    Article  Google Scholar 

  24. Krivtsov AM. Molecular dynamics simulation of impact fracture in polycrystalline materials. Meccanica. 2003;38:61–70.

    Article  MATH  Google Scholar 

  25. Loskutov AY, Mikhailov AS. Foundations of synergetics. Berlin/New York: Springer; 1990.

    MATH  Google Scholar 

  26. Wolfram S. Cellular automata as models of complexity. Nature. 1984;311:419–24.

    Article  Google Scholar 

  27. Wiener N, Rosenblueth A. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch Inst Cardiol México. 1946;16:205–65.

    MathSciNet  MATH  Google Scholar 

  28. Smolin AY, Eremina GM, Sergeyev VV, Shilko EV, Psakhie SG. Three-dimensional MCA simulation of elastoplastic deformation and fracture of coatings in contact interaction with a rigid indenter. Phys Mesomech. 2014;17:292–303.

    Article  Google Scholar 

  29. Smolin AY, Shilko EV, Astafurov SV, Konovalenko IS, Buyakova SP, Psakhie SG. Modeling mechanical behaviors of composites with various ratios of matrix–inclusion properties using movable cellular automaton method. Defence Technology. 2015;11:18–34.

    Article  Google Scholar 

  30. Kroc J. Application of cellular automata simulations to modelling of dynamic recrystallization. Lect Notes Comput Sci. 2002;2329:773–82.

    Article  MATH  Google Scholar 

  31. Godara A, Raabe D. Mesoscale simulation of the kinetics and topology of spherulite growth during crystallization of isotactic polypropylene (iPP) by using a cellular automaton. Model Simul Mater Sci Eng. 2005;13:733–51.

    Article  Google Scholar 

  32. Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. New York: Pergamon; 1995.

    Google Scholar 

  33. Moiseenko DD, Panin VE, Maksimov PV, Panin SV, Berto F. Material fragmentation as dissipative process of micro rotation sequence formation: hybrid model of excitable cellular automata. AIP Conf Proc. 2014;1623:427–30.

    Article  Google Scholar 

  34. Moiseenko DD, Panin VE, Elsukova TF. Role of local curvature in grain boundary sliding in a deformed polycrystal. Phys Mesomech. 2013;16:335–47.

    Article  Google Scholar 

  35. Panin VE, Egorushkin VE, Moiseenko DD, et al. Functional role of polycrystal grain boundaries and interfaces in micromechanics of metal ceramic composites under loading. Comput Mater Sci. 2016;116:74–81.

    Article  Google Scholar 

  36. Sih GC. Mesomechanics of energy and mass interaction for dissipative systems. Phys Mesomech. 2010;13:233–44.

    Article  Google Scholar 

  37. Mott NF. Slip at grain boundaries and grain growth in metals. Proc Phys Soc. 1948;60:391–4.

    Article  MATH  Google Scholar 

  38. Sadovskii VM, Sadovskaya OV. On the acoustic approximation of thermomechanical description of a liquid crystal. Phys Mesomech. 2013;16:310–6.

    Article  Google Scholar 

  39. Meshcheryakov YI, Khantuleva TA. Nonequilibrium processes in condensed media: part 1. Experimental studies in light of nonlocal transport theory. Phys Mesomech. 2015;18:228–43.

    Article  Google Scholar 

  40. Moiseenko DD, Pochivalov YI, Maksimov PV, Panin VE. Rotational deformation modes in near-boundary regions of grain structure in a loaded polycrystal. Phys Mesomech. 2013;16:248–58.

    Article  Google Scholar 

  41. Moiseenko DD, Maksimov PV, Panin SV, Panin VE. Defect accumulation in Nanoporous wear-resistant coatings under collective recrystallization. Simulation by hybrid cellular automaton method. In: Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V, editors. Proceedings of VII European congress on computational methods in applied sciences and engineering. Published on-line https://eccomas2016.org/proceedings/pdf/10631.pdf.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moiseenko, D.D., Maksimov, P.V., Panin, S.V., Babich, D.S., Panin, V.E. (2018). Defect Accumulation in Nanoporous Wear-Resistant Coatings Under Collective Recrystallization: Simulation by Hybrid Cellular Automaton Method. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics