Skip to main content

Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue

  • Living reference work entry
  • First Online:
Book cover Handbook of Mechanics of Materials

Abstract

Ferritic–martensitic dual-phase (DP) steels are increasingly being used in various automotive components because of their favorable material behavior for lightweight and crash-safe designs. DP steels deform with strong strain and stress partitioning at the microscale. Deformation pattern of ferrite and martensite phases under tensile loading condition is the most important issue which can be effective on the prediction of mechanical behavior of DP steel. Deformation pattern and strain localization play an important role in the process of damage initiation and final fracture. Failure in DP steels is a phenomenon that has been extensively investigated in the last decade through experimental tests and simulation methods. Experimental procedures have shown that failure has a ductile pattern and that shear failure of ferrite matrix is dominant in these materials. On the other hand, experimental findings have shown that failure due to fatigue loading occurred with different pattern comparing to the other loading conditions. To understand and improve DP steels, it is important to identify connections between the microstructural parameters and the mechanical behavior of these materials at macroscale. This work provides a detailed micromechanical investigation of DP steels focusing on micro-deformation, micro-damage, and micro-fatigue analysis of DP steels based on experimental and numerical approaches to highlight the current and future directions and open problems about these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R. G.Davies. The deformation behavior of a vanadium-strengthened dual phase steel. Metall Trans A. 1978;9(1):41–52.

    Article  Google Scholar 

  2. Peng-Heng C, Preban AG. The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel. Acta Metall. 1985;33(5):897–903.

    Article  Google Scholar 

  3. R. G. Davies. Early stages of yielding and strain aging of a vanadium-containing dual-phase steel. Metall Trans A. 1979;10(10):1549–55.

    Article  Google Scholar 

  4. Mazinani M, Poole WJ. Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel. Metall Mater Trans A. 2007;38A:328.

    Article  Google Scholar 

  5. Paul SK. Micromechanics based modeling of Dual Phase steels: prediction of ductility and failure modes. Comput Mater Sci. 2012;56:34–42.

    Article  Google Scholar 

  6. Calcagnotto M, Adachi Y, Ponge D, Raabe D. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59(2):658–70.

    Article  Google Scholar 

  7. Ghadbeigi H, Pinna C, Celotto S. Failure mechanisms in DP600 steel: initiation, evolution and fracture. Mater Sci Eng A. 2013;588:420–31.

    Article  Google Scholar 

  8. Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A. FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume. Comput Mater Sci. 2012;65:197–202.

    Article  Google Scholar 

  9. Kadkhodapour J, Butz A, Ziaei-Rad S, Schmauder S. A micro mechanical study on failure initiation of dual phase steels under tension using single crystal plasticity model. Int J Plast. 2011;27:1103–25.

    Article  MATH  Google Scholar 

  10. Kim S, Lee S. Effects of martensite morphology and volume fraction on quasi-static and dynamic deformation behavior of dual-phase steels. Metall Mater Trans A. 2000;31A:1753.

    Article  Google Scholar 

  11. Uthaisangsuk V, Prahl U, Bleck W. Modelling of damage and failure in multiphase high strength DP and TRIP steels. Eng Fract Mech. 2011;78:469–86.

    Article  Google Scholar 

  12. Vajragupta N, Uthaisangsuk V, Schmaling B, Münstermann S, Hartmaier A, Bleck W. A micromechanical damage simulation of dual phase steels using XFEM. Comput Mater Sci. 2012;54:271–9.

    Article  Google Scholar 

  13. Ramazani A, Schwedt A, Aretz A, Prahl U, Bleck W. Characterization and modelling of failure initiation in DP steel. Comput Mater Sci. 2013;75:35–44.

    Article  Google Scholar 

  14. Paul SK, Kumar A. Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels. Comput Mater Sci. 2012;63:66–74.

    Article  Google Scholar 

  15. Sun X, Choi KS, Soulami A, Liu WN, Khaleel MA. On key factors influencing ductile fractures of dual phase (DP) steels. Mater Sci Eng A. 2009;526:140–9.

    Article  Google Scholar 

  16. Katani S, Ziaei-Rad S, Nouri N, Saeidi N, Kadkhodapour J, Torabian N, Schmauder S. Microstructure modelling of dual-phase steel using SEM micrographs and voronoi polycrystal models. Metallogr Microstruct Anal. 2013;2(3):156–69.

    Article  Google Scholar 

  17. Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D. Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 2014;81:386–400.

    Article  Google Scholar 

  18. Chen P, Ghassemi-Armaki H, Kumar S, Bower A, Bhat S, Sadagopan S. Microscale-calibrated modeling of the deformation response of dual-phase steels. Acta Mater. 2014;65:133–49.

    Article  Google Scholar 

  19. Woo W, Em VT, Kim E-Y, Han SH, Han YS, Choi S-H. Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 2012;60(20):6972–81.

    Article  Google Scholar 

  20. Sperle JO. Fatigue strength of high strength dual phase steel sheet. Int J Fatigue. 1985;7(2):79–86.

    Article  Google Scholar 

  21. Wännman L, Melander A. Influence of martensite contents and properties on fatigue behaviour of dual-phase sheet steels. Mater Des. 1991;12(3):129–32.

    Article  Google Scholar 

  22. Miller KJ. The behavior of short fatigue cracks and their initiation Part II. A general summery. Fatigue Fract Eng Mater Struct. 1987;10(2):93–113.

    Article  Google Scholar 

  23. Jezernik N, Kramberger J, Lassen T, Glodez S. Numerical modelling of fatigue crack initiation and growth of martensitic steels. Fatigue Fract Eng Mater Struct. 2010;33:714–23.

    MATH  Google Scholar 

  24. Gündüz S. Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels. Mater Lett. 2009;63(27):2381–3.

    Article  Google Scholar 

  25. Hüper T, Endo S, Ishikawa N, Osawa K. Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels. ISIJ Int. 1999;39(3):288–94.

    Article  Google Scholar 

  26. Bag A, Ray KK, Dwarakadasa ES. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall Mater Trans A. 1999;30(5):1193–202.

    Article  Google Scholar 

  27. Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J, Shadalooyi G. Microstructural deformation pattern and mechanical behavior analyses of DP600 dual phase steel. Mater Sci Eng A. 2014;600:108–21.

    Article  Google Scholar 

  28. Rodriguez R, Gutierrez I. In: Lamberigts M, editor. Proceedings of the TMP, 2004. Düsseldorf: Verlag Stahleisen GMBH; 2004. p. 356.

    Google Scholar 

  29. Rodriguez R, Gutierrez I. Unified formulation to predict the tensile curves of steels with different microstructures. Mater Sci Forum. 2003;426–432:4525–30.

    Article  Google Scholar 

  30. Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des. 2012;41:370–9.

    Article  Google Scholar 

  31. Saeidi N, Ashrafizadeh F, Niroumand B. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior. Mater Sci Eng A. 2014;599(2):145–9.

    Article  Google Scholar 

  32. Park K, Nishiyama M, Nakada N, Tsuchiyama T, Takaki S. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater Sci Eng A. 2014;604(16):135–41.

    Article  Google Scholar 

  33. Ghassemi-Armaki H, Maaß R, Bhat SP, Sriram S, Greer JR, Kumar KS. Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater. 2014;62:197–211.

    Article  Google Scholar 

  34. Zhao Z, Tong T, Liang J, Yin H, Zhao A, Tang D. Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng A. 2014;618(17):182–8.

    Article  Google Scholar 

  35. Zhang J, Di H, Deng Y, Misra RDK. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater Sci Eng A. 2015;627(11):230–40.

    Article  Google Scholar 

  36. Tasan CC, Hoefnagels JPM, Geers MGD. A critical assessment of indentation-based ductile damage quantification. Acta Mater. 2009;57:4957–66.

    Article  Google Scholar 

  37. Avramovic-Cingara G, Ososkov Y, Jain MK, Wilkinson DS. Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Mater Sci Eng A. 2009;516:7–16.

    Article  Google Scholar 

  38. Avramovic-Cingara G, Saleh CAR, Jain MK, Wilkinson DS. Void nucleation and growth in dual-phase steel 600 during uniaxial tensile testing. Metall Mater Trans A. 2009;40A:3117.

    Article  Google Scholar 

  39. Han Q, Kang Y, Hodgson PD, Stanford N. Quantitative measurement of strain partitioning and slip systems in a dual-phase steel. Scr Mater. 2013;69(1):13–6.

    Article  Google Scholar 

  40. Joo S-H, Lee JK, Koo J-M, Lee S, Suh D-W, Kim HS. Method for measuring nanoscale local strain in a dual phase steel using digital image correlation with nanodot patterns. Scr Mater. 2013;68(5):245–8.

    Article  Google Scholar 

  41. Alaie A, Kadkhodapour J, Ziaei Rad S, Asadi Asadabad M, Schmauder S. Formation and coalescence of strain localized regions in ferrite phase of DP600 steels under uniaxial tensile deformation. Mater Sci Eng A. 2015;623:133–44.

    Article  Google Scholar 

  42. Alaie A, Ziaei Rad S, Kadkhodapour J, Jafari M, Asadi Asadabad M, Schmauder S. Effect of microstructure pattern on the strain localization in DP600 steels analyzed using combined in-situ experimental test and numerical simulation. Mater Sci Eng A. 2015;638:251–61.

    Article  Google Scholar 

  43. Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M, Tsuzaki K, Raabe D. An overview of dual-phase steels: advances in processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:391–431.

    Article  Google Scholar 

  44. Al-Abbasi FM, Nemes JA. Micromechanical modeling of the effect of particle size difference in dual phase steels. Int J Solids Struct. 2003;40:3379–91.

    Article  MATH  Google Scholar 

  45. Sun X, Choi KS, Liu WN, Khaleel MA. Predicting failure modes and ductility of dual phase steels using plastic strain localization. Int J Plast. 2009;25:1888–909.

    Article  Google Scholar 

  46. Mori T, Tanaka K. Average stress in matrix and avegare elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21:571–4.

    Article  Google Scholar 

  47. Paul SK. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual phase steel. Model Simul Mater Sci Eng. 2013;21:055001.

    Article  Google Scholar 

  48. Ramazani A, Mukherjee K, Quade H, Prahl U, Bleck W. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure based RVE approach. Mater Sci Eng A. 2013;560:129–39.

    Article  Google Scholar 

  49. Amirmaleki M, Samei J, Green DE, van Riemsdijk I, Stewart L. 3D micromechanical modeling of dual phase steels using the representative volume element method. Mech Mater. 2016;101:27–39.

    Article  Google Scholar 

  50. Spitzig WA, Smelser RE, Richmond O. The evolution of damage and fracture in iron compacts with various initial porosities. Acta Metall. 1988;36(5):1201–11.

    Article  Google Scholar 

  51. Le Roy G, Embury JD, Edwards G, Ashby MF. A model of ductile fracture based on the nucleation and growth of voids. Acta Metall. 1981;29(8):1509–22.

    Article  Google Scholar 

  52. Qiu H, Mori H, Enoki M, Kishi T. Evaluation of ductile fracture of structural steels by microvoid model. ISIJ Int. 1999;39(4):358–64.

    Article  Google Scholar 

  53. Kadkhodapour J, Anbarlooie B, Hosseini-Toudeshky H, Schmauder S. Simulation of shear failure in dual phase steels using localization criteria and experimental observation. Comput Mater Sci. 2014;94:106–13.

    Article  Google Scholar 

  54. Hosseini-Toudeshky H, Anbarlooie B, Kadkhodapour J. Micromechanics stress–strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding. Mater Des. 2015;68:167–76.

    Article  Google Scholar 

  55. Babout L, Maire E, Fougères R. Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Mater. 2004;52(8):2475–87.

    Article  Google Scholar 

  56. Martin CF, Josserond C, Salvo L, Blandin JJ, Cloetens P, Boller E. Characterisation by X-ray micro-tomography of cavity coalescence during superplastic deformation. Scr Mater. 2000;42(4):375–81.

    Article  Google Scholar 

  57. Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A. Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels. Acta Mater. 2011;59:7564–73.

    Article  Google Scholar 

  58. Maire E, Bouaziz O, Di Michiel M, Verdu C. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater. 2008;56:4954–64.

    Article  Google Scholar 

  59. Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids. 1969;17(3):201–17.

    Article  Google Scholar 

  60. Buffière JY, Maire E, Cloetens P, Lormand G, Fougères R. Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater. 1999;47(5):1613–25.

    Article  Google Scholar 

  61. Hu W, Wang CH, Barter S. Analysis of cyclic mean stress relaxation and strain ratchetting behaviour of aluminum 7050. DSTO-RR-0153. DSTO Aeronautical and Maritime Research Laboratory, Defense Technical Information Center, 1999.

    Google Scholar 

  62. Sinha S, Ghosh S. Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int J Fatigue. 2006;28:1690–704.

    Article  Google Scholar 

  63. Lee C-H, Van Do VN, Chang K-H. Analysis of uniaxial ratcheting behavior and cyclic mean stress relaxation of a duplex stainless steel. Int J Plast. 2014;62:17–33.

    Article  Google Scholar 

  64. Paul SK, Stanford N, Taylor A, Hilditch T. The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress–strain response and microstructural development in a dual phase steel. Int J Fatigue. 2015;80:341–8.

    Article  Google Scholar 

  65. Paul SK, Stanford N, Hilditch T. Effect of martensite volume fraction on low cycle fatigue behavior of dual phase steels: experimental and microstructural investigation. Mater Sci Eng A. 2015;638:296–304.

    Article  Google Scholar 

  66. Tayanc M, Aytac A, Bayram A. The effect of carbon content on fatigue strength of dual-phase steels. Mater Des. 2007;28:1827–35.

    Article  Google Scholar 

  67. Hadianfard MJ. Low cycle fatigue behavior and failure mechanism of a dual-phase steel. Mater Sci Eng A. 2009;499:493–9.

    Google Scholar 

  68. Lemaitre J. A course on damage mechanics. 2nd edition, Springer-Verlag Berlin Heidelberg, 1996.

    Google Scholar 

  69. Ritchie RO. Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fract. 1999;100:55–83.

    Article  Google Scholar 

  70. Ritchie RO. Influence of microstructure on near-threshold fatigue crack propagation in ultra-high strength steel. Met Sci. 1977;11:368–81.

    Article  Google Scholar 

  71. McDowell DL, Dunne FPE. Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue. 2010;32:1521–42.

    Article  Google Scholar 

  72. Miller KJ. The short crack problem. Fatigue Fract Eng Mater Struct. 1982;5(3):223–32.

    Article  Google Scholar 

  73. Tokaji K, Ogawa T, Harada Y, Ando Z. Limitation of linear elastic fracture mechanics in respect of small fatigue cracks and microstructure. Fatigue Fract Eng Mater Struct. 1986;9(1):1–14.

    Article  Google Scholar 

  74. Anbarlooie B, Hosseini-Toudeshky H, Kadkhodapour J. High cycle fatigue micromechanical behavior of dual phase steel: Damage initiation, propagation and final failure. Mech Mater. 2017;106:8–19.

    Google Scholar 

  75. Motoyashiki Y, Bruckner-Foit A, Sugeta A. Microstructural influence on small fatigue cracks in a ferritic–martensitic steel. Eng Fract Mech. 2008;75:768–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Kadkhodapour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anbarlooie, B., Kadkhodapour, J., Hosseini Toudeshky, H., Schmauder, S. (2018). Micromechanics of Dual-Phase Steels: Deformation, Damage, and Fatigue. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics