Skip to main content

Modeling of Multilayered Disc Subjected to Biaxial Flexure Tests

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

Although standard test methods for biaxial strength measurements of ceramics have been established and the corresponding formulas for relating the biaxial strength to the fracture load have been approved by the American Society for Testing and Materials (ASTM) and International Organization for Standardization, respectively, they are limited to the case of monolayered discs. Despite the increasing applications of multilayered ceramics, characterization of their strengths using biaxial flexure tests has been difficult because the analytical description of the relation between the strength and the fracture load for multilayers subjected to biaxial flexure tests is unavailable until recently. Using ring-on-ring tests as an example, the closed-form solutions for stresses in (i) monolayered discs based on ASTM formulas, (ii) bilayered discs based on Roark’s formulas, (iii) multilayered discs based on Hsueh et al.’s rigorous formulas, and (iv) multilayered discs based on Hsueh et al.’s simplified formulas are reviewed in this chapter. Finite element results for ring-on-ring tests performed on (i) zirconia monolayered discs, (ii) dental crown materials of porcelain/zirconia bilayered discs, and (iii) solid oxide fuel cell trilayered discs are also presented to validate the closed-form solutions. Finally, a case study of layer thickness effects in bilayered dental ceramics subjected to both thermal stresses and ring-on-ring tests is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hu SM. Stress-related problems in silicon technology. J Appl Phys. 1991;70:R53.

    Article  Google Scholar 

  2. Brett RL, Rowlinson N, Ashraf MM, Harris IR, Bowen P. Magnetic and mechanical properties of rotary forged aluminum compacted Nd-Fe-B magnets. J Appl Phys. 1990;67(9):4622–4.

    Article  Google Scholar 

  3. Skorvánek I, Gerling R. The influence of neutron irradiation on the soft magnet and mechanical properties of amorphous and nanocrystalline Fe73.5.Cu1Nb3Si13.5B9 alloys. J Appl Phys. 1992;72(8):3417–22.

    Article  Google Scholar 

  4. Arai A, Kobayashi O, Takagi F, Akioka K, Shimoda T. Mechanical properties of hot-rolled Pr-Fe-B-cu magnets. J Appl Phys. 1994;75(10):6631–3.

    Article  Google Scholar 

  5. Wachtman JB, Capps W, Mandel J. Biaxial flexure tests of ceramic substrates. J Mater. 1972;7:188–94.

    Google Scholar 

  6. Ritter JE, Jakus K, Batakis A, Bandyopadhyay N. Appraisal of biaxial strength testing. J Non-Cryst Solids. 1980;38/39:419–24.

    Article  Google Scholar 

  7. Shetty DK, Rosenfield AR, McGuire P, Bansal GK, Duckworth WH. Biaxial flexure tests for ceramics. Am Ceram Soc Bull. 1980;59(12):1193–7.

    Google Scholar 

  8. Morena R, Beaudreau GM, Lockwood PE, Evans AL, Fairhurst CW. Fatigue of dental ceramics in a simulated oral environment. J Dent Res. 1986;65:993–7.

    Article  Google Scholar 

  9. Lucas GE. Review of small specimen test techniques for irradiation testing. Metall Trans. 1990;21A:1105–19.

    Article  Google Scholar 

  10. Meyers DE, Chen FC, Zhang J, Ardell AJ. Optimization of test parameters for quantitative stress measurements using the miniaturized disk-bend test. Am Soc Test Mater. 1993;21:263–71.

    Google Scholar 

  11. Hehn LP, Chen Z, Mecholsky JJ, Klocek P, Hoggins JT, Trombetta JM. Fracture surface analysis of free-standing diamond films. J Mater Res. 1994;9(6):1540–5.

    Article  Google Scholar 

  12. Kelly JR. Perspectives on strength. Dent Mater. 1995;11(2):103–10.

    Article  Google Scholar 

  13. Jämting AK, Bell JM, Swain MV, Schwarzer N. Investigation of the elastic modulus of thin films using simple biaxial bending techniques. Thin Solid Films. 1997;308–309:304–9.

    Article  Google Scholar 

  14. Zeng K, Odén A, Rowcliffe D. Evaluation of mechanical properties of dental ceramic core materials in combination with porcelains. Int J Prosthodont. 1998;11(2):183–9.

    Google Scholar 

  15. Shi JL, Zhu GQ, Gao JH, Li L, Lu ZL, Lai TR. Biaxial stretching of superplastic Y-TZP, Y-TZP/Al2O3, and Y-TZP/LAS glass composites in air atmosphere. J Mater Res. 1998;13(8):2224–30.

    Article  Google Scholar 

  16. Simpatico A, Cannon WR, Matthewson MJ. Comparison of hydraulic-burst and ball-on-ring tests for measuring biaxial strength. J Am Ceram Soc. 1999;82(10):2737–44.

    Article  Google Scholar 

  17. Atkinson A, Selcuk A. Residual stress and fracture of laminated ceramic membranes. Acta Mater. 1999;47(3):867–74.

    Article  Google Scholar 

  18. Thompson GA. Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater. 2000;16:235–43.

    Article  Google Scholar 

  19. WAJ H, Lucksanasombool P, RJED H, Swain MV. Evaluating acrylic and glass-ionomer cement strength using the biaxial flexure test. Biomaterials. 2001;22:1583–903.

    Article  Google Scholar 

  20. Li JF, Pan W, Sato F, Watanabe R. Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures. Acta Mater. 2001;49:937–45.

    Article  Google Scholar 

  21. Selcuk A, Merere G, Atkinson A. The influence of electrodes on the strength of planar zirconia solid oxide fuel cells. J Mater Sci. 2001;36(5):1173–82.

    Article  Google Scholar 

  22. Bhamra G, Palin WM, GJP F. The effect of surface roughness on the flexure strength of an alumina reinforced all-ceramic crown material. J Dent. 2002;30:153–60.

    Article  Google Scholar 

  23. Isgrò G, Pallav P, van der Zel JM, Feilzer AJ. The influence of the veneering porcelain and different surface treatments on the biaxial flexural strength of a heat-pressed ceramic. Journal of prosthetic. Dentistry. 2003;90:465–73.

    Google Scholar 

  24. Guazzato M, Proos K, Quach L, Swain MV. Strength reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials. 2004;25:5045–52.

    Article  Google Scholar 

  25. Addison O, GJP F. The influence of cement lute, thermocycling and surface preparation on the strength of a porcelain laminate veneering material. Dent Mater. 2004;20:286–92.

    Article  Google Scholar 

  26. Thompson GA. Determining the slow crack growth parameter and Weibull two-parameter estimates of bilaminate disks by constant displacement-rate flexural testing. Dent Mater. 2004;20:51–62.

    Article  Google Scholar 

  27. GJP F, Jandu HS, Nolan L, Shaini FJ. The influence of alumina abrasion and cement lute on the strength of a porcelain laminate veneering material. J Dent. 2004;32:67–74.

    Article  Google Scholar 

  28. Curtis AR, Wright AJ, GJP F. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J Dent. 2006;34:195–206.

    Article  Google Scholar 

  29. Nadai A. Die verbiegungen in einzelnen punkten understützten kriesförmiger platten. Physik Z. 1922;23:366–76.

    MATH  Google Scholar 

  30. Muskhelishvili NI. Some basic problems of the mathematical theory of elasticity. Noordhoff International Publishing; 1954.

    Google Scholar 

  31. Bassali WA. The transverse flexure of thin elastic plates supported at several points. Proceedings Cambridge philosophical. Society. 1957;53:728–43.

    MathSciNet  MATH  Google Scholar 

  32. Vitman FF, Pukh VP. A method for determining the strength of sheet glass. Zavodskaya Laboratoriya. 1963;29(7):863–7.

    Google Scholar 

  33. Kirstein AF, Woolley RM. Symmetrical bending of thin circular elastic plates on equally spaced point supports. J Res Natl Bur Stand. 1967;71C(1):1–10.

    Google Scholar 

  34. ASTM C 1499-05, Standard test method for monotonic equibiaxial flexural strength of advanced ceramics at ambient temperature. ASTM International, West Conshohocken, Pennsylvania; 2005.

    Google Scholar 

  35. ISO 6872, Dentistry – Ceramic materials. International Organization for Standardization, Case postale 56, Geneva; 2006.

    Google Scholar 

  36. Roark RJ, Young WC. Formulas for stress & strain. 5th ed. New York: McGraw-Hill; 1986.

    Google Scholar 

  37. Hsueh CH, Lance MJ, Ferber MK. Stress distributions in thin bilayer discs subjected to ball-on-ring tests. J Am Ceram Soc. 2005;88:1687–90.

    Article  Google Scholar 

  38. Hsueh CH, Luttrell CR, Becher PF. Analyses of multilayered dental ceramics subjected to biaxial flexure tests. Dent Mater. 2006;22(5):460–9.

    Article  MATH  Google Scholar 

  39. Hsueh CH, Luttrelll CR, Becher PF. Modeling of multilayered disks subjected to biaxial flexure tests. Int J Solids Struct. 2006;43:6014–25.

    Article  MATH  Google Scholar 

  40. Hsueh CH, Luttrelll CR. Recent advances in modeling stress distributions in multilayers subjected to biaxial flexure tests. Compos Sci Technol. 2007;67:278–85.

    Article  Google Scholar 

  41. Hsueh CH, Thompson GA, Jadaan OM, Wereszczak AA, Becher PF. Analyses of layer-thickness effects in bilayered dental ceramics subjected to thermal stresses and ring-on-ring tests. Dent Mater. 2008;24:9–17.

    Article  Google Scholar 

  42. Hsueh CH, Thompson GA. Appraisal of formulas for stresses in bilayered dental ceramics subjected to biaxial moment loading. J Dent. 2007;35:600–6.

    Article  Google Scholar 

  43. Hsueh CH. Stresses in multilayered ceramics subjected to biaxial flexure tests. Mater Sci Forum. 2009;606:79–92.

    Article  Google Scholar 

  44. Salem JA, Powers L. Guidelines for the testing of plates. Ceram Eng Sci Proc. 2003;24:357–64.

    Article  Google Scholar 

  45. Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells. New York: McGraw-Hill; 1959.

    MATH  Google Scholar 

  46. Hsueh CH, Kelly JR. Simple solutions of multilayered discs subjected to biaxial moment loading. Dent Mater. 2009;25(4):506–13.

    Article  Google Scholar 

  47. Hsueh CH, Miranda P. Modeling of contact-induced radial cracking in ceramic bilayer coatings on compliant substrates. J Mater Res. 2003;18:1275–83.

    Article  Google Scholar 

  48. Rosenstiel SF, Gupta PK, Van Der Sluys RA, Zimmerman MH. Strength of a dental glass–ceramic after surface coating. Dent Mater. 1993;9:274–9.

    Article  Google Scholar 

  49. Pagniano RP, Seghi RR, Rosenstiel SF, Wang R, Katsube N. The effect of a layer of resin luting agent on the biaxial flexure strength of two all-ceramic systems. Journal of prosthetic. Dentistry. 2005;93:459–66.

    Google Scholar 

  50. Hsueh CH. Thermal stresses in elastic multilayer systems. Thin Solid Films. 2002;418(2):182–8.

    Article  Google Scholar 

  51. Hsueh CH. Modeling of elastic deformation of multilayers due to residual stresses and external bending. J Appl Phys. 2002;91(12):9652–6.

    Article  Google Scholar 

  52. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res. 1995;74:1253–8.

    Article  Google Scholar 

  53. Käse HR, Tesk JA, Case ED. Elastic constants of two dental porcelains. J Mater Sci. 1985;20:524–31.

    Article  Google Scholar 

  54. Fischer H, Hemelik M, Telle R, Marx R. Influence of annealing temperature on the strength of dental glass ceramic materials. Dent Mater. 2005;21:671–7.

    Article  Google Scholar 

Download references

Acknowledgments

The work was performed mainly at Oak Ridge National Laboratory and supported by US Department of Energy, Division of Materials Sciences and Engineering, Office of Basic Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This chapter was compiled at National Taiwan University and supported by the Ministry of Science and Technology, Taiwan, under Contract No. MOST 103-2221-E-002-076-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hway Hsueh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hsueh, CH. (2018). Modeling of Multilayered Disc Subjected to Biaxial Flexure Tests. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_69-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics