Skip to main content

In-Situ Nanomechanical Testing in Electron Microscopes

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

Understanding the mechanical behavior of nanostructured and nanosized materials at the nanoscale is very important in improving their structural stability and operational reliability. This chapter introduces unique in-situ nanomechanical testing techniques in electron microscopes that assist in the precise positioning and direct characterization of nanoscale samples, while avoiding their aging or contamination by the environment. The first two short sections address the importance of mechanical behavior at the nanoscale and present some examples of conventional nanomechanical testing and ex-situ deformation observations. The third section introduces the instrument for in-situ nanomechanical testing in electron microscopes, the preparation of samples for testing, and some complimentary components of the tools. The final section presents some applications of the powerful techniques to achieve precise mechanical measurements and direct deformation/failure observations at the nanoscale of various materials of various dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Freund LB, Suresh S. Thin film materials – stress, defect formation and surface evaluation. New York: Cambridge University Press; 2003.

    MATH  Google Scholar 

  2. Chang SY, Chang HL, Lu YC, Jang SM, Lin SJ, Liang MS. Mechanical property analyses of porous low-dielectric-constant films for stability evaluation of multilevel-interconnect structures. Thin Solid Films. 2004;460(1–2):167–74.

    Article  Google Scholar 

  3. Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5:52–5.

    Article  MATH  Google Scholar 

  4. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. 2007;6:454–62.

    Article  Google Scholar 

  5. Koester KJ, Ager JW III, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7:672–7.

    Article  Google Scholar 

  6. Chang YT, Chen CM, Tu MY, Chen HL, Chang SY, Tsai TC, Wang YT, Hsiao HL. Effects of osteoporosis and nutrition supplements on structures and nanomechanical properties of bone tissue. J Mech Behav Biomed Mater. 2011;4(7):1412–20.

    Article  Google Scholar 

  7. Wang YT, Chang SY, Huang YC, Tsai TC, Chen CM, Lim CT. Nanomechanics insights into the performance of healthy and osteoporotic bones. Nano Lett. 2013;13(11):5247–54.

    Article  Google Scholar 

  8. Chang SY, Chang TK. Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test. J Appl Phys. 2007;101(3):033507.

    Article  Google Scholar 

  9. Chang SY, Huang YC, Lin YM. Mechanical property and fracture behavior characterizations of 96.5 Sn-3.0 Ag-0.5 Cu solder joints. J Alloys Compd. 2010;490(1–2):508–14.

    Article  Google Scholar 

  10. Sun CQ. Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog Mater Sci. 2009;54:179–307.

    Article  Google Scholar 

  11. Van Swygenhoven H. Grain boundaries and dislocations. Science. 2002;296:66–7.

    Article  Google Scholar 

  12. Schiǿtz J, Jacobsen KW. A maximum in the strength of nanocrystalline copper. Science. 2003;301:1357–9.

    Article  Google Scholar 

  13. Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003;51:5743–74.

    Article  Google Scholar 

  14. Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556.

    Article  Google Scholar 

  15. Pande CS, Cooper KP. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54:689–706.

    Article  Google Scholar 

  16. Zhu T, Li J. Ultra-strength materials. Prog Mater Sci. 2010;55:710–57.

    Article  Google Scholar 

  17. Greer JR, De HJTM. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci. 2011;56:654–724.

    Article  Google Scholar 

  18. Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res. 1986;1:601–9.

    Article  Google Scholar 

  19. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.

    Article  Google Scholar 

  20. Fischer-Cripps AC. Nanoindentation. New York: Springer; 2002.

    Book  Google Scholar 

  21. Chang SY, Lee YS, Hsiao HL, Chang TK. Mechanical properties and deformation behavior of amorphous nickel-phosphorous films measured by nanoindentation test. Metall Mater Trans A. 2006;37:2939–45.

    Article  Google Scholar 

  22. Chang SY, Chang JY, Lin SJ, Tsai HC, Chang YS. Interface chemistry and adhesion strength between porous SiOCH low-k film and SiCN layers. J Electrochem Soc. 2008;155(2):G39–43.

    Article  Google Scholar 

  23. Chang SY, Lin SY, Huang YC, Wu CL. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings. Surf Coat Technol. 2010;204(20):3307–14.

    Article  Google Scholar 

  24. Wang DS, Chang SY, Huang YC, Wu JB, Lai HJ, Leu MS. Nanoscopic observations of stress-induced formation of graphitic nanocrystallites at amorphous carbon surfaces. Carbon. 2014;74:302–11.

    Article  Google Scholar 

  25. Gerberich WW, Mook WM, Perrey CR, Carter CB, Baskes MI, Mukherjee R, Gidwani A, Heberlein J, McMurry PH, Girshick SL. Superhard silicon nanospheres. J Mech Phys Solids. 2003;51:979–92.

    Article  Google Scholar 

  26. Ross FM. In situ transmission electron microscopy. In: Hawkes PW, JCH S, editors. Science of microscopy. New York: Springer; 2007.

    Google Scholar 

  27. Dehm G, Howe JM, Zweck J, editors. In-situ electron microscopy: applications in physics, chemistry and materials science. Weinheim: Wiley-VCH; 2012.

    Google Scholar 

  28. Nili H, Kalantar-zadeh K, Bhaskaran M, Sriram S. In situ nanoindentation: probing nanoscale multifunctionality. Prog Mater Sci. 2013;58:1–29.

    Article  Google Scholar 

  29. Yu Q, Legros M, Minor AM. In situ TEM nanomechanics. MRS Bull. 2015;40:62–8.

    Article  Google Scholar 

  30. Michler J, Arzt E. In situ indentation testing of elastomers. Acta Mater. 2008;56:4390–401.

    Article  Google Scholar 

  31. Wheeler JM, Raghavan R, Michler J. In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures. Mater Sci Eng A. 2011;528:8750–6.

    Article  Google Scholar 

  32. Walley JL, Wheeler R, Uchic MD, Mills MJ. In-situ mechanical testing for characterizing strain localization during deformation at elevated temperatures. Exp Mech. 2012;52:405–16.

    Article  Google Scholar 

  33. Wheeler JM, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev Sci Instrum. 2013;84:045103.

    Article  Google Scholar 

  34. Jin M, Minor AM, Stach EA, Morris JW Jr. Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 2004;52:5381–7.

    Article  Google Scholar 

  35. Minor AM, Syed Asif SA, Shan ZW, Stach EA, Cyrankowski E, Wyrobek TJ, Warren OL. A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater. 2006;5:697–702.

    Article  Google Scholar 

  36. De Hossen JTM, Soer WA, Minor AM, Shan ZW, Stach EA, Syed Asif SA, Warren OL. In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon. J Mater Sci. 2006;41:7704–19.

    Google Scholar 

  37. Liu Y, Karaman I, Wang H, Zhang X. Two types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies. Adv Mater. 2014;26:3893–8.

    Article  Google Scholar 

  38. Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX. Grain boundary–mediated plasticity in nanocrystalline nickel. Science. 2004;305:654–7.

    Article  Google Scholar 

  39. Wang ZL, Poncharal P, de Heer WA. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J Phys Chem Solids. 2000;61:1025–30.

    Article  Google Scholar 

  40. Barth S, Harnagea C, Mathur S, Rosei F. The elastic moduli of oriented tin oxide nanowires. Nanotechnology. 2009;20:115705.

    Article  Google Scholar 

  41. Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J. In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces. 2011;3:648–53.

    Article  Google Scholar 

  42. Mook WM, Niederberger C, Bechelany M, Philippe L, Michler J. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology. 2010;21:055701.

    Article  Google Scholar 

  43. Deneen J, Mook WM, Minor AM, Gerberich WW, Carter CB. In situ deformation of silicon nanospheres. J Mater Sci. 2006;41:4477–83.

    Article  Google Scholar 

  44. Shan ZW, Adesso G, Cabot A, Sherburne MP, Syed Asif SA, Warren OL, Chrzan DC, Minor AM, Alivisatos AP. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat Mater. 2008;7:947–52.

    Article  Google Scholar 

  45. Issa I, Amodeo J, Réthoré J, Joly-Pottuz L, Esnouf C, Morthomas J, Perez M, Chevalier J, Masenelli-Varlot K. In situ investigation of MgO nanocube deformation at room temperature. Acta Mater. 2015;86:295–304.

    Article  Google Scholar 

  46. Sun J, He L, Lo YC, Xu T, Bi H, Sun L, Zhang Z, Mao SX, Li J. Liquid-like pseudoelasticity of sub-10-nm crystalline Ag particles. Nat Mater. 2014;13:1007–12.

    Article  Google Scholar 

  47. Gerberich WW, Mook W, Cordill MJ, Carter CB, Perrey CR, Heberlein JV, Girshick SL. Reverse plasticity in single crystal silicon nanospheres. Int J Plast. 2005;21:2391–405.

    Article  MATH  Google Scholar 

  48. Fang KC, Weng CI, Ju SP. An investigation into the mechanical properties of silicon nanoparticles using molecular dynamics simulations with parallel computing. J Nanopart Res. 2009;11:581–8.

    Article  Google Scholar 

  49. Gerberich WW, Michler J, Mook WM, Ghisleni R, Östlund F, Stauffer DD, Ballarini R. Scale effects for strength, ductility, and toughness in “brittle” materials. J Mater Res. 2009;24:898–906.

    Article  Google Scholar 

  50. Uchic MD, Dimiduk DM, Florando JN, Nix WD. Sample dimensions influence strength and crystal plasticity. Science. 2004;305:986–9.

    Article  Google Scholar 

  51. Volkert CA, Lilleodeen ET. Size effects in the deformation of sub-micron Au columns. Philos Mag. 2006;86:5567–79.

    Article  Google Scholar 

  52. Shan ZW, Mishra RK, Syed Asif SA, Warren OL, Minor AM. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater. 2008;7:115–9.

    Article  Google Scholar 

  53. Kim JY, Jang D, Greer JR. Tensile and compressive behavior of tungsten, molybdenum tantalum and niobium at the nanoscale. Acta Mater. 2010;58:2355–63.

    Article  Google Scholar 

  54. Withey EA, Minor AM, Chrzan DC, Morris JW Jr, Kuramoto S. The deformation of gum metal through in situ compression of nanopillars. Acta Mater. 2010;58:2652–65.

    Article  Google Scholar 

  55. Chou HS, Du XH, Lee CJ, Huang JC. Enhanced mechanical properties of multilayered micropillars of amorphous ZrCuTi and nanocrystalline Ta layers. Intermetallics. 2011;19:1047–51.

    Article  Google Scholar 

  56. Chu JP, Jang JSC, Huang JC, Chou HS, Yang Y, Ye JC, Wang YC, Lee JW, Liu FX, Liaw PK, Chen YC, Lee CM, Li CL, Rullyani C. Thin film metallic glasses: unique properties and potential applications. Thin Solid Films. 2012;520:5097–122.

    Article  Google Scholar 

  57. Ye J, Mishra RK, Pelton AR, Minor AM. Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 2010;58:490–8.

    Article  Google Scholar 

  58. Kunz A, Pathak S, Greer JR. Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 2011;59:4416–24.

    Article  Google Scholar 

  59. Jang D, Greer JR. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr Mater. 2011;64:77–80.

    Article  Google Scholar 

  60. Aitken ZH, Jang D, Weinberger CR, Greer JR. Grain boundary sliding in aluminum nano-bi-crystals deformed at room temperature. Small. 2014;10(1):100–8.

    Article  Google Scholar 

  61. Lu L, Chen X, Huang X, Lu K. Revealing the maximum strength in nanotwinned copper. Science. 2009;323:607–10.

    Article  Google Scholar 

  62. Jang D, Cai C, Greer JR. Influence of homogeneous interfaces on the strength of 500 nm diameter Cu nanopillars. Nano Lett. 2011;11:1743–6.

    Article  Google Scholar 

  63. Jang D, Li X, Gao H, Greer JR. Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol. 2012;7:594–601.

    Article  Google Scholar 

  64. Dayal P, Quadir MZ, Kong C, Savvides N, Hoffman M. Transition from dislocation controlled plasticity to grain boundary mediated shear in nanolayered aluminum/palladium thin films. Thin Solid Films. 2011;519:3213–20.

    Article  Google Scholar 

  65. Ye J, Mishra RK, Sachdev AK, Minor AM. In situ TEM compression testing of Mg and Mg–0.2 wt.% Ce single crystals. Scr Mater. 2011;64:292–5.

    Article  Google Scholar 

  66. Lee SW, Han SM, Nix WD. Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater. 2009;57:4404–15.

    Article  Google Scholar 

  67. Yu Q, Shan ZW, Li J, Huang X, Xiao L, Sun J, Ma E. Strong crystal size effect on deformation twinning. Nature. 2010;463:335–8.

    Article  Google Scholar 

  68. Östlund F, Howie PR, Ghisleni R, Korte S, Leifer K, Clegg WJ, Michler J. Ductile–brittle transition in micropillar compression of GaAs at room temperature. Philos Mag. 2011;91:1190–9.

    Article  Google Scholar 

  69. Cao W, Kundu A, Yu Z, Harmer MP, Vinci RP. Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium-doped magnesium aluminate spinel. Scr Mater. 2013;69(1):81–4.

    Article  Google Scholar 

  70. Cao W, Marvel C, Yin D, Zhang Y, Cantwell P, Harmer MP, Luo J, Vinci RP. Correlations between microstructure, fracture morphology, and fracture toughness of nanocrystalline Ni–W alloys. Scr Mater. 2016;113:84–8.

    Article  Google Scholar 

  71. Vanstreels K, De Wolf I, Zahedmanesh H, Bender H, Gonzalez M, Lefebvre J, Bhowmick S. In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests. Appl Phys Lett. 2014;105:213102.

    Article  Google Scholar 

  72. Erdemir A, Donnet C. Tribology of diamond-like carbon films: recent progress and future prospects. J Phys D Appl Phys. 2006;39:311–27.

    Article  Google Scholar 

  73. Sutter G, Ranc N. Flash temperature measurement during dry friction process at high sliding speed. Wear. 2010;268:1237–42.

    Article  Google Scholar 

  74. Ma TB, Hu YZ, Wang H. Molecular dynamics simulation of shear induced graphitization of amorphous carbon films. Carbon. 2009;47:1953–7.

    Article  Google Scholar 

  75. Merkle AP, Erdemir A, Eryilmaz OL, Johnson JA, Marks LD. In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon. 2010;48:587–91.

    Article  Google Scholar 

  76. Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11:757–66.

    Article  Google Scholar 

  77. Oh SH, Legros M, Kiener D, Dehm G. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater. 2009;8:95–100.

    Article  Google Scholar 

  78. Kobler A, Kashiwar A, Hahn H, Kübel C. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy. 2013;128:68–81.

    Article  Google Scholar 

  79. Wang L, Teng J, Liu P, Hirata A, Ma E, Zhang Z, Chen M, Han X. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun. 2014;5:4402.

    Google Scholar 

  80. Zhu Y, Xu F, Qin Q, Fung WY, Lu W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 2009;9:3934–9.

    Article  Google Scholar 

  81. Kiener D, Grosinger W, Dehm G, Pippan R. A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 2008;56:580–92.

    Article  Google Scholar 

  82. Kiener D, Minor AM. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett. 2011;11(9):3816–38202.

    Article  Google Scholar 

  83. Chisholm C, Bei H, Lowry MB, Oh J, Syed Asif SA, Warren OL, Shan ZW, George EP, Minor AM. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 2012;60:2258–64.

    Article  Google Scholar 

  84. Chen LY, He MR, Shin J, Richter G, Gianola GS. Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat Mater. 2015;14:707–14.

    Article  Google Scholar 

  85. Bernal RA, Aghaei A, Lee S, Ryu S, Sohn K, Huang J, Cai W, Espinosa H. Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension. Nano Lett. 2015;15:139–46.

    Article  Google Scholar 

  86. Qin Q, Yin S, Cheng G, Li X, Chang TH, Richter G, Zhu Y, Gao H. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat Commun. 2015;6:5983.

    Article  Google Scholar 

  87. Seo JH, Park HS, Yoo Y, Seong TY, Li J, Ahn JP, Kim B, Choi IS. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett. 2013;13:5112–6.

    Article  Google Scholar 

  88. Wang JW, Narayanan S, Huang JY, Zhang Z, Zhu T, Mao SX. Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals. Nat Commun. 2013;4:2340.

    Google Scholar 

  89. Lu Y, Song J, Huang JY, Lou J. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 2011;4:1261–7.

    Article  Google Scholar 

  90. Yue Y, Liu P, Zhang Z, Han X, Ma E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011;11:3151–5.

    Article  Google Scholar 

  91. Yue Y, Chen N, Li X, Zhang S, Zhang Z, Chen M, Han X. Crystalline liquid and rubber-like behavior in Cu nanowires. Nano Lett. 2013;13:3812–6.

    Article  Google Scholar 

  92. Xiang B, Wang L, Liu G, Minor AM. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM. J Electrochem Soc. 2013;160(3):A415–9.

    Article  Google Scholar 

  93. Kiener D, Motz C, Rester M, Jenko M, Dehm G. FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater Sci Eng A. 2007;459:262–72.

    Article  Google Scholar 

  94. Lai YH, Lee CJ, Cheng YT, Chou HS, Chen HM, Du XH, Chang CI, Huang JC, Jian SR, Jang JSC, Nieh TG. Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr Mater. 2008;58:890–3.

    Article  Google Scholar 

  95. Yang Y, Ye JC, Lu J, Liu FX, Liaw PK. Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars. Acta Mater. 2009;57:1613–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Yi Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chang, SY. (2018). In-Situ Nanomechanical Testing in Electron Microscopes. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_53-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_53-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics