Skip to main content

Characterizing Mechanical Properties of Polymeric Material: A Bottom-Up Approach

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 486 Accesses

Abstract

Polymeric materials have received tremendous attention in both industrial and scientific communities, and can be readily found in applications across a large range of length scales, ranging from the nanoscale structures, such as the photoresist lithography in the micro-electro-mechanical systems, to the macroscale components, such as the adhesive bonding in the aerospace industry and civil infrastructures. The durability of these applications is mainly determined by the mechanical reliability of the constituent polymeric materials. In this chapter, a review of the bottom-up approach to investigate the mechanical properties of the polymeric materials is provided. A dynamic algorithm is developed to achieve the cross-linking process of the atomistic network, which possesses the mechanical properties in a good accordance with the experimental measurements. Meanwhile, the moisture effect on the mechanical properties is studied based on the atomistic model, and it is found that the mechanical properties of the solvated models show no significant deterioration. Furthermore, the predicted mechanical properties at the atomistic level are used to develop the cross-linked network at the mesoscale, which enables the investigation of the effect of the structural voids on the polymeric materials. The simulation results demonstrate the strong mechanical reliability of the synthetic polymeric materials during the long-term service life. The multiscale method summarized in this chapter provides a versatile tool to link the nano-level mechanical properties of the polymeric materials to the macro-level material behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zhou J, Lucas JP. Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy. Polymer. 1999;40:5505.

    Article  Google Scholar 

  2. Núñez L, Villanueva M, Fraga F, Núñez MR. Influence of water absorption on the mechanical properties of a DGEBA (n=0)/1,2 DCH epoxy system. J Appl Polym Sci. 1999;74:353.

    Google Scholar 

  3. Lyons JS, Ahmed MR. Factors affecting the bond between polymer composites and wood. J Reinf Plast Compos. 2005;24:405.

    Article  Google Scholar 

  4. Custódio J, Broughton J, Cruz H. A review of factors influencing the durability of structural bonded timber joints. Int J Adhes Adhes. 2009;29:173.

    Article  Google Scholar 

  5. Lau D, Büyüköztürk O. Fracture characterization of concrete/epoxy interface affected by moisture. Mech Mater. 2010;42:1031.

    Article  Google Scholar 

  6. Büyüköztürk O, Buehler MJ, Lau D, Tuakta C. Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface. Int J Solids Struct. 2011;48:2131.

    Article  Google Scholar 

  7. Gunes O, Lau D, Tuakta C, Büyüköztürk O. Ductility of FRP-concrete systems: investigations at different length scales. Constr Build Mater. 2013;49:915.

    Article  Google Scholar 

  8. Pethrick RA. Positron annihilation – a probe for nanoscale voids and free volume? Prog Polym Sci. 1997;22:1.

    Google Scholar 

  9. Dlubek G, Hassan E, Krause-Rehberg R, Pionteck J. Free volume of an epoxy resin and its relation to structural relaxation: evidence from positron lifetime and pressure-volume-temperature experiments. Phys Rev E. 2006;73:031803.

    Google Scholar 

  10. Shibuya Y, Zoledziowski S, Calderwood JH. Void formation and electrical breakdown in epoxy resin. IEEE Trans Power Apparatus Syst. 1977;96:198.

    Article  Google Scholar 

  11. Hamerton I, Heald CR, Howlin BJ. Molecular modelling of the physical and mechanical properties of two polycyanurate network polymers. J Mater Chem. 1996;6:311.

    Article  Google Scholar 

  12. Doherty DC, Holmes BN, Leung P, Ross RB. Polymerization molecular dynamics simulations: I. Cross-linked atomistic models for poly(methacrylate) networks. Comput Theor Polym Sci. 1998;8:169.

    Article  Google Scholar 

  13. Yarovsky I, Evans E. Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer. 2002;43:963.

    Article  Google Scholar 

  14. Heine DR, Grest GS, Lorenz CD, Tsige M, Stevens MJ. Atomistic simulations of end-linked poly(dimethylsiloxane) networks: structure and relaxation. Macromolecules. 2004;37:3857.

    Article  Google Scholar 

  15. Wu C, Xu W. Atomistic molecular modelling of crosslinked epoxy resin. Polymer. 2006;47:6004.

    Article  Google Scholar 

  16. Komarov PV, Chiu Y-T, Chen S-M, Khalatur PG, Reineker P. Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. Macromolecules. 2007;40:8104.

    Google Scholar 

  17. Fan HB, Yuen MM. Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer. 2007;48:2174.

    Article  Google Scholar 

  18. Tack JL, Ford DM. Thermodynamic and mechanical properties of epoxy resin DGEBF crosslinked with DETDA by molecular dynamics. J Mol Graph Model. 2008;26:1269.

    Article  Google Scholar 

  19. Varshney V, Patnaik SS, Roy AK, Farmer BL. A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules. 2008;41:6837.

    Article  Google Scholar 

  20. Li C, Strachan A. Molecular simulations of crosslinking process of thermosetting polymers. Polymer. 2010;51:6058.

    Google Scholar 

  21. Li C, Strachan A. Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer. 2011;52:2920.

    Google Scholar 

  22. Nouri N, Ziaei-Rad S. A molecular dynamics investigation on mechanical properties of cross-linked polymer networks. Macromolecules. 2011;44:5481.

    Article  Google Scholar 

  23. Yang S, Qu J. Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations. Polymer. 2012;53:4806.

    Article  Google Scholar 

  24. Bandyopadhyay A, Valavala PK, Clancy TC, Wise KE, Odegard GM. Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer. 2011;52:2445.

    Article  Google Scholar 

  25. Larsen GS, Lin P, Hart KE, Colina CM. Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules. 2011;44:6944.

    Article  Google Scholar 

  26. Shenogina NB, Tsige M, Patnaik SS, Mukhopadhyay SM. Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks. Macromolecules. 2012;45:5307.

    Article  Google Scholar 

  27. Bandyopadhyay A, Odegard GM. Molecular modeling of crosslink distribution in epoxy polymers. Model Simul Mater Sci Eng. 2012;20:045018.

    Google Scholar 

  28. Shenogina NB, Tsige M, Patnaik SS, Mukhopadhyay SM. Molecular modeling of elastic properties of thermosetting polymers using a dynamic deformation approach. Polymer. 2013;54:3370.

    Article  Google Scholar 

  29. Khalatur P, Papulov YG, Pavlov A. The influence of solvent on the static properties of polymer chains in solution: a molecular dynamics simulation. Mol Phys. 1986;58:887.

    Article  Google Scholar 

  30. Tasaki K. Poly(oxyethylene)-water interactions: a molecular dynamics study. J Am Chem Soc. 1996;118:8459.

    Article  Google Scholar 

  31. Hofmann D, Fritz L, Ulbrich J, Schepers C, Böhning M. Detailed‐atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials. Macromol Theory Simul. 2000;9:293.

    Article  Google Scholar 

  32. Lefebvre D, Elliker P, Takahashi K, Raju V, Kaplan M. The critical humidity effect in the adhesion of epoxy to glass: role of hydrogen bonding. J Adhes Sci Technol. 2000;14:925.

    Google Scholar 

  33. Mijovic J, Zhang H. Local dynamics and molecular origin of polymer network-water interactions as studied by broadband dielectric relaxation spectroscopy, FTIR, and molecular simulations. Macromolecules. 2003;36:1279.

    Article  Google Scholar 

  34. Goudeau S, Charlot M, Vergelati C, Müller-Plathe F. Atomistic simulation of the water influence on the local structure of polyamide 6,6. Macromolecules. 2004;37:8072.

    Article  Google Scholar 

  35. Mijovic J, Zhang H. Molecular dynamics simulation study of motions and interactions of water in a polymer network. J Phys Chem B. 2004;108:2557.

    Article  Google Scholar 

  36. Lin Y, Chen X. Moisture sorption–desorption–resorption characteristics and its effect on the mechanical behavior of the epoxy system. Polymer. 2005;46:11994.

    Article  Google Scholar 

  37. Lin Y, Chen X. Investigation of moisture diffusion in epoxy system: experiments and molecular dynamics simulations. Chem Phys Lett. 2005;412:322.

    Article  Google Scholar 

  38. Fan HB, Chan EK, Wong CK, Yuen MM. Investigation of moisture diffusion in electronic packages by molecular dynamics simulation. J Adhes Sci Technol. 2006;20:1937.

    Article  Google Scholar 

  39. Wu C, Xu W. Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin. Polymer. 2007;48:5440.

    Article  Google Scholar 

  40. Clancy TC, Frankland S, Hinkley J, Gates T. Molecular modeling for calculation of mechanical properties of epoxies with moisture ingress. Polymer. 2009;50:2736.

    Article  Google Scholar 

  41. Hörstermann H, Hentschke R, Amkreutz M, Hoffmann M, Wirts-Rütters M. Predicting water sorption and volume swelling in dense polymer systems via computer simulation. J Phys Chem B. 2010;114:17013.

    Article  Google Scholar 

  42. Lee SG, Jang SS, Kim J, Kim G. Distribution and diffusion of water in model epoxy molding compound: molecular dynamics simulation approach. IEEE Trans Adv Packag. 2010;33:333.

    Article  Google Scholar 

  43. Hölck O, Dermitzaki E, Wunderle B, Bauer J, Michel B. Basic thermo-mechanical property estimation of a 3D-crosslinked epoxy/SiO2 interface using molecular modelling. Microelectron Reliab. 2011;51:1027.

    Google Scholar 

  44. Deshmukh SA, Sankaranarayanan SK, Suthar K, Mancini DC. Role of solvation dynamics and local ordering of water in inducing conformational transitions in poly(N-isopropylacrylamide) oligomers through the LCST. J Phys Chem B. 2012;116:2651.

    Article  Google Scholar 

  45. Tam L-h, Lau D. A molecular dynamics investigation on the cross-linking and physical properties of epoxy-based materials. RSC Adv. 2014;4:33074.

    Article  Google Scholar 

  46. Yagyu H, Hirai Y, Uesugi A, Makino Y, Sugano K, Tsuchiya T, Tabata O. Simulation of mechanical properties of epoxy-based chemically amplified resist by coarse-grained molecular dynamics. Polymer. 2012;53:4834.

    Article  Google Scholar 

  47. Kremer K, Grest GS. Dynamics of entangled linear polymer melts: a molecular‐dynamics simulation. J Chem Phys. 1990;92:5057.

    Article  Google Scholar 

  48. Palkovic SD, Brommer DB, Kupwade-Patil K, Masic A, Buehler MJ, Büyüköztürk O. Roadmap across the mesoscale for durable and sustainable cement paste-a bioinspired approach. Constr Build Mater. 2016;115:13.

    Article  Google Scholar 

  49. Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P. SU-8: a lowcost negative resist for MEMS. J Micromech Microeng. 1997;7:121.

    Article  Google Scholar 

  50. Feng R, Farris RJ. The characterization of thermal and elastic constants for an epoxy photoresist SU8 coating. J Mater Sci. 2002;37:4793.

    Article  Google Scholar 

  51. Hammacher J, Fuelle A, Flaemig J, Saupe J, Loechel B, Grimm J. Stress engineering and mechanical properties of SU-8-layers for mechanical applications. Microsyst Technol. 2008;14:1515.

    Article  Google Scholar 

  52. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT. Structure and energetics of ligand binding to proteins: escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Bioinf. 1988;4:31.

    Article  Google Scholar 

  53. Maple JR, Dinur U, Hagler AT. Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proc Natl Acad Sci. 1988;85:5350.

    Article  Google Scholar 

  54. Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897.

    Article  Google Scholar 

  55. Sun H, Mumby SJ, Maple JR, Hagler AT. An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc. 1994;116:2978.

    Article  Google Scholar 

  56. Sun H. Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules. 1995;28:701.

    Article  Google Scholar 

  57. Lin P-H, Khare R. Molecular simulation of cross-linked epoxy and epoxy− POSS nanocomposite. Macromolecules. 2009;42:4319.

    Article  Google Scholar 

  58. Oie T, Maggiora GM, Christoffersen RE, Duchamp DJ. Development of a flexible intra- and intermolecular empirical potential function for large molecular systems. Int J Quantum Chem. 1981;20:1.

    Article  Google Scholar 

  59. Rappe AK, Goddard WA III. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95:3358.

    Article  Google Scholar 

  60. Materials Studio; 2009. (San Diego, CA: Accelrys Software Inc.) 

    Google Scholar 

  61. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1.

    Google Scholar 

  62. Theodorou DN, Suter UW. Detailed molecular structure of a vinyl polymer glass. Macromolecules. 1985;18:1467.

    Article  Google Scholar 

  63. Shinoda W, Shiga M, Mikami M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Phys Rev B. 2004;69:134103.

    Article  Google Scholar 

  64. Abbott LJ, Hart KE, Colina CM. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theor Chem Accounts. 2013;132:1.

    Article  Google Scholar 

  65. Nijdam A, et al. Fluidic encapsulation in SU-8 μ-reservoirs with μ-fluidic through-chip channels. Sensors Actuators A Phys. 2005;120:172.

    Google Scholar 

  66. Kim J-K, Hu C, Woo RS, Sham M-L. Moisture barrier characteristics of organoclay-epoxy nanocomposites. Compos Sci Technol. 2005;65:805.

    Article  Google Scholar 

  67. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926.

    Article  Google Scholar 

  68. Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327.

    Google Scholar 

  69. Landau LD, Lifshitz E, Sykes J, Reid W, Dill EH. Theory of elasticity: vol. 7 of course of theoretical physics. Phys Today. 2009;13:44.

    Article  Google Scholar 

  70. Hirschl C, et al. Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—a comparative study. Sol Energy Mater Sol Cells. 2013;116:203.

    Article  Google Scholar 

  71. Chernev BS, Hirschl C, Eder GC. Non-destructive determination of ethylene vinyl acetate cross-linking in photovoltaic (PV) modules by Raman spectroscopy. Appl Spectrosc. 2013;67:1296.

    Article  Google Scholar 

  72. Feng R, Farris RJ. Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings. J Micromech Microeng. 2003;13:80.

    Article  Google Scholar 

  73. Lawrence SS, Willett JL, Carriere CJ. Effect of moisture on the tensile properties of poly(hydroxy ester ether). Polymer. 2001;42:5643.

    Article  Google Scholar 

  74. Ishiyama C, Higo Y. Effects of humidity on Young’s modulus in poly(methyl methacrylate). J Polym Sci B Polym Phys. 2002;40:460.

    Article  Google Scholar 

  75. Ito S, et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials. 2005;26:6449.

    Article  Google Scholar 

  76. Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1989.

    MATH  Google Scholar 

  77. Tam L-h, Lau D. Effect of structural voids on mesoscale mechanics of epoxy-based materials. Coupled Syst Mech. 2016;5:355.

    Google Scholar 

  78. Tam L-h, Lau D. Moisture effect on the mechanical and interfacial properties of epoxy-bonded material system: an atomistic and experimental investigation. Polymer. 2015;57:132.

    Article  Google Scholar 

  79. Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys. 2008;71:126601.

    Google Scholar 

  80. Lau D, Büyüköztürk O, Buehler MJ. Characterization of the intrinsic strength between epoxy and silica using a multiscale approach. J Mater Res. 2012;27:1787.

    Article  Google Scholar 

  81. Tam L-h, Lau D. Molecular mechanics of organic composite materials: a case study of cellulose-adhesive system. MRS Online Proc Library Archive. 2014;1662:mrsf13-1662-vv05-02.

    Google Scholar 

  82. Lau D, Broderick K, Buehler MJ, Büyüköztürk O. A robust nanoscale experimental quantification of fracture energy in a bilayer material system. Proc Natl Acad Sci. 2014;111:11990.

    Article  Google Scholar 

  83. Zhou A, Tam L-h, Yu Z, Lau D. Effect of moisture on the mechanical properties of CFRP-wood composite: an experimental and atomistic investigation. Compos Part B. 2015;71:63.

    Google Scholar 

  84. Tam L-h, Lau D. Molecular simulation of adhesion property recovery in the cellulose/phenolic adhesive interface: the role of water molecules. MRS Online Proc Library Archive. 2015;1793:59.

    Google Scholar 

  85. Yu Z, Lau D. Nano-and mesoscale modeling of cement matrix. Nanoscale Res Lett. 2015;10:173.

    Google Scholar 

  86. Bonomi M, et al. PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun. 2009;180:1961.

    Google Scholar 

  87. Buehler MJ. Mesoscale modeling of mechanics of carbon nanotubes: self-assembly, self-folding, and fracture. J Mater Res. 2006;21:2855.

    Google Scholar 

  88. Buehler MJ. Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture and self-assembly. J Mater Res. 2006;21:1947.

    Article  Google Scholar 

  89. Adler DC, Buehler MJ. Mesoscale mechanics of wood cell walls under axial strain. Soft Matter. 2013;9:7138.

    Article  Google Scholar 

  90. Sen D, Buehler MJ. Atomistically-informed mesoscale model of deformation and failure of bioinspired hiearchical silica nanocomposites. Int J Appl Mech. 2010;2:699.

    Article  Google Scholar 

  91. Tam L-h, Lau D. Micromechanics of wood cell wall. MRS Adv. 2016;1:3837.

    Google Scholar 

  92. Tam L-h, Zhou A, Yu Z, Qiu Q, Lau D. Understanding the effect of temperature on the interfacial behavior of CFRP-wood composite via molecular dynamics simulations. Compos Part B. 2017;109:227.

    Google Scholar 

  93. Jeffrey K, Pethrick RA. Influence of chemical structure on free volume in epoxy resins: a positron annihilation study. Eur Polym J. 1994;30:153.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denvid Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tam, Lh., Lau, D. (2018). Characterizing Mechanical Properties of Polymeric Material: A Bottom-Up Approach. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics