Skip to main content

3D/4D X-Ray Microtomography: Probing the Mechanical Behavior of Materials

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

A fundamental principle in materials science and engineering is that the microstructure controls material properties. The use of three-dimensional techniques has gained popularity in establishing structure-property relationships in a variety of material systems. In particular, X-ray microtomography is being widely used as it requires minimal sample preparation and is nondestructive in nature. Moreover, being a nondestructive technique, it is very well suited to perform 4D studies (the fourth dimension being time) where the evolution of microstructure can be captured over time. This chapter describes the fundamentals of X-ray microtomography followed by applications of the use of X-ray microtomography to understand the mechanical properties of materials under a variety of loading conditions, such as tensile loading, fatigue loading, corrosion fatigue, and stress corrosion cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Williams JJ, Chapman NC, Jakkali V, Tanna VA, Chawla N, Xiao X, De Carlo F. Characterization of damage evolution in SiC particle reinforced Al alloy matrix composites by in-situ X-ray synchrotron tomography. Metall Mater Trans A. 2011;42:2999–3005.

    Article  Google Scholar 

  2. Stock SR. Microcomputed tomography: methodology and applications. Boca Raton: CRC Press; 2008.

    Book  Google Scholar 

  3. Maire E, Zhou SX, Adrien J, Dimichiel M. Damage quantification in aluminium alloys using in situ tensile tests in X-ray tomography. Eng Fract Mech. 2011;78(15):2679–90.

    Article  Google Scholar 

  4. Maire E, Carmona V, Courbon J, Ludwig W. Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Mater. 2007;55:6806–15.

    Article  Google Scholar 

  5. Patterson BM, Cordes NL, Henderson K, Williams JJ, Stannard T, Singh SS, Ovejero AR, Xiao X, Robinson M, Chawla N. In situ X-ray synchrotron tomographic imaging during the compression of hyper-elastic polymeric materials. J Mater Sci. 2016;51:171–87.

    Article  Google Scholar 

  6. Cordes NL, Henderson K, Stannard T, Williams JJ, Xiao X, Robinson MWC, Schaedler TA, Chawla N, Patterson BM. Synchrotron-based X-ray computed tomography during compression loading of cellular materials. Microscopy Today. 2015;23:12–9.

    Article  Google Scholar 

  7. Guvenilir A, Breunig TM, Kinney JH, Stock SR. Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li 2090. Acta Mater. 1997;45(5):1977–87.

    Article  Google Scholar 

  8. Chapman NC, Silva J, Williams JJ, Chawla N, Xiao X. Characterization of thermal cycling induced cavitation in particle reinforced metal matrix composites by three-dimensional (3D) X-ray synchrotron tomography. Mater Sci Technol. 2014;31(5):573–8.

    Article  Google Scholar 

  9. Williams JJ, Yazzie KE, Padilla E, Chawla N, Xiao X, De Carlo F. Understanding fatigue crack growth in aluminum alloys by in situ X-ray synchrotron tomography. Int J Fatigue. 2013;57:79–85.

    Article  Google Scholar 

  10. Khor KH, Buffiere JY, Ludwig W, Toda H, Ubhi HS, Gregson PJ, Sinclair I. In situ high resolution synchrotron X-ray tomography of fatigue crack closure micromechanisms. J Phys Condens Matter. 2004;16:S3511–5.

    Article  Google Scholar 

  11. Toda H, Sinclair I, Buffiere JY, Maire E, Connolley T, Joyce M, Khor KH, Gregson P. Assessment of the fatigue crack closure phenomenon in damage-tolerant aluminium alloy by in-situ high-resolution synchrotron X-ray microtomography. Philos Mag. 2003;83(21): 2429–48.

    Article  Google Scholar 

  12. Babout L, Marrow TJ, Engelberg D, Withers PJ. X-ray microtomographic observation ofintergranular stress corrosion cracking in sensitized austenitic stainless steel. Mater Sci Technol. 2006;22:1068–75.

    Article  Google Scholar 

  13. Marrow TJ, Babout L, Jivkov AP, Wood P, Engelberg D, Stevens N, Withers PJ, Newman RC. Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel. J Nucl Mater. 2006;352:62–74.

    Article  Google Scholar 

  14. King A, Johnson G, Engelberg D, Ludwig W, Marrow TJ. Observations of intergranular stress corrosion cracking in a grain- mapped polycrystal. Science. 2008;321(5887):382–5.

    Article  Google Scholar 

  15. Singh SS, Williams JJ, Stannard TJ, Xiao X, De Carlo F, Chawla N. Measurement of localized corrosion rates at inclusion particles in AA7075 by in situ three dimensional (3D) X-ray synchrotron tomography. Corros Sci. 2016;104:330–5.

    Article  Google Scholar 

  16. Singh SS, Williams JJ, Xiao X, De Carlo F, Chawla N. In Situ three dimensional (3D) X-ray synchrotron tomography of corrosion fatigue in Al7075 alloy. In: Srivatsan TS, Imam AM, Srinivasan R, editors. Fatigue of materials II: advances and emergences in understanding. Pittsburgh: Materials Science and Technology; 2012.

    Google Scholar 

  17. Isaac A, Sket F, Reimers W, Camin B, Sauthoff G, Pyzalla AR. In situ 3D quantification of the evolution of creep cavity size, shape, and spatial orientation using synchrotron X-ray tomography. Mater Sci Eng A. 2008;478:108–18.

    Article  Google Scholar 

  18. Stock SR. Recent advances in X-ray microtomography applied to materials. Int Mater Rev. 2008;53:129–81.

    Article  Google Scholar 

  19. Marone F, Stampanoni M. Regridding reconstruction algorithm for real-time tomographic imaging. J Synchrotron Radiat. 2012;19:1029–37.

    Article  Google Scholar 

  20. Baruchel J, Buffiere JY, Maire E, Merle P, Peix G. X-ray tomography in material science. Paris: HERMES Science Publications; 2000.

    Google Scholar 

  21. Mertens JCE, Williams JJ, Chawla N. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization. Mater Charact. 2014;92:36–48.

    Article  Google Scholar 

  22. Mertens JCE, Williams JJ, Chawla N. A study of Pb-rich dendrites in a near-eutectic 63Sn-37Pb solder microstructure via laboratory-scale micro X-ray computed tomography (μXCT). J Electron Mater. 2014;43:4442–56.

    Article  Google Scholar 

  23. Stock SR. X-ray computed tomography, X-ray techniques, characterization of materials. Hoboken: Wiley; 2012.

    Google Scholar 

  24. Maire E, Withers PJ. Quantitative X-ray tomography. Int Mater Rev. 2014;59:1–43.

    Article  Google Scholar 

  25. Singh SS, Schwartzstein C, Williams JJ, Xiao X, De Carlo F, Chawla N. 3D microstructural characterization and mechanical properties of constituent particles in Al 7075 alloys using X-ray synchrotron tomography and nanoindentation. J Alloys Compd. 2014;602:163–74.

    Article  Google Scholar 

  26. Silva FA, Williams JJ, Mueller BR, Hentschel MP, Portella PD, Chawla N. 3D microstructure visualization of inclusions and porosity in SiC particle reinforced Al matrix composites by X-ray synchrotron tomography. Metall Mater Trans A. 2010;41:2121–8.

    Article  Google Scholar 

  27. Williams JJ, Flom Z, Amell AA, Chawla N, Xiao X, De Carlo F. Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography. Acta Mater. 2010;58:6194–205.

    Article  Google Scholar 

  28. Wang M, Xu Y, Zheng Q, Wu S, Jing T, Chawla N. Dendritic growth in Mg-based alloys: phase-field simulations and experimental verification by X-ray synchrotron tomography. Metall Mater Trans A. 2014;45:2562–74.

    Article  Google Scholar 

  29. Singh SS, Loza JJ, Merkle AP, Chawla N. Three dimensional microstructural characterization of nanoscale precipitates in AA7075-T651 by focused ion beam (FIB) tomography. Mater Charact. 2016;118:102–11.

    Article  Google Scholar 

  30. Singh SS, Guo E, Xie H, Chawla N. Mechanical properties of intermetallic inclusions in Al 7075 alloys by micropillar compression. Intermetallics. 2015;62:69–75.

    Article  Google Scholar 

  31. Merkle AP, Lechner L, Steinbach A, Gelb J, Kienle M, Phaneuf MW, Unrau D, Singh SS, Chawla N. Automated correlative tomography using XRM and FIB-SEM to span length scales and modalities in 3D materials. Microsc Microanal. 2014;28:S10–3.

    Google Scholar 

  32. Withers PJ, Preuss M. Fatigue and damage in structural materials studied by X-ray tomography. Annu Rev Mater Res. 2012;42:81–103.

    Article  Google Scholar 

  33. Buffiere JY, Maire E, Adrien J, Masse JP, Boller E. In situ experiments with X-ray tomography: an attractive tool for experimental mechanics. Exp Mech. 2010;50:289–305.

    Article  Google Scholar 

  34. Beckmann F, Grupp R, Haibel A, Huppmann M, Nöthe M, Pyzalla A, Reimers W, Schreyer A, Zettler R. In-situ synchrotron X-ray microtomography studies of microstructure and damage evolution in engineering materials. Adv Eng Mater. 2007;9:939–50.

    Article  Google Scholar 

  35. Salvo L, Suery M, Marmottant A, Limodin N, Bernard D. 3D imaging in material science: application of X-ray tomography. C R Phys. 2010;11:641–9.

    Article  Google Scholar 

  36. Maire E, Buffiere J-Y, Salvo L, Blandin JJ, Ludwig W, Letang JM. On the application of X-ray microtomography in the field of materials science. Adv Eng Mater. 2001;3:539–46.

    Article  Google Scholar 

  37. Singh SS, Williams JJ, Hruby P, Xiao X, De Carlo F, Chawla N. In situ experimental techniques to study the mechanical behavior of materials using X-ray synchrotron tomography. Integr Mater Manuf Innov. 2014;3:1–14.

    Article  Google Scholar 

  38. Hruby P, Singh SS, Williams JJ, Xiao X, De Carlo F, Chawla N. Fatigue crack growth in SiC particle reinforced Al alloy matrix composites at high and low R-ratios by in situ X-ray synchrotron tomography. Int J Fatigue. 2014;68:136–43.

    Article  Google Scholar 

  39. Singh SS, Williams JJ, Lin MF, Xiao X, De Carlo F, Chawla N. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography. Mater Res Lett. 2014;2(4):217–20.

    Article  Google Scholar 

  40. Singh SS, Stannard TJ, Xiao X, Chawla N. In situ X-ray microtomography of stress corrosion cracking and corrosion fatigue in aluminum alloys. JOM. 2017;69(8):1404–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Chawla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, S.S., Chawla, N. (2018). 3D/4D X-Ray Microtomography: Probing the Mechanical Behavior of Materials. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics