Simulation of Fracture Behavior of Weldments

Living reference work entry

Abstract

In this chapter, the fracture behavior of an S355 electron beam welded joint is simulated with the Rousselier, Gurson-Tvergaard-Needleman (GTN), and cohesive zone models separately. First, each model is discussed and the method identifying the model parameters is given. Second, the simulation results on the crack propagation of compact tension (C(T)) specimens with the initial crack located at different weld regions are given. Finally, the cohesive zone model is compared with the other two models, showing its superiority.

References

  1. 1.
    ISO 4063. “Welding and allied processes – nomenclature of processes and reference numbers”. 1998.Google Scholar
  2. 2.
    Rousselier G. Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des. 1987;105:97–111.CrossRefGoogle Scholar
  3. 3.
    Rousselier G. The Rousselier model for porous metal plasticity and ductile fracture. In: Handbook of materials behaviour models; London: Academic Press; 2001. p. 436–45.Google Scholar
  4. 4.
    Schmauder S, Uhlmann D, Zies G. Experimental and numerical investigations of two material states of the material 15NiCuMoNb5 (WB 36). Comput Mater Sci. 2002;25:174–92.CrossRefGoogle Scholar
  5. 5.
    Seidenfuss M. Untersuchungen zur Beschreibung des Versagensverhaltens mit Hilfe von Schädigungsmodellen am Beispiel des Werkstoffs 20MnMoNi55. Dissertation, Universität Stuttgart; 1992.Google Scholar
  6. 6.
    Tu HY, Schmauder S, Weber U, Rudnik Y, Ploshikhin V. Simulation of the damage behavior of electron beam welded joints with the Rousselier model. Eng Fract Mech. 2013;103:153–61.CrossRefGoogle Scholar
  7. 7.
    Mohanta A. Numerical determination of failure curves. Master thesis, University of Stuttgart; 2003.Google Scholar
  8. 8.
    Weber U, Mohanta A, Schmauder S. Numerical determination of parameterised failure curves for ductile structural materials. Int J Mater Res. 2007;98:1071–80.CrossRefGoogle Scholar
  9. 9.
    Tu HY. Numerical simulation and experimental investigation of the fracture behaviour of an electron beam welded steel joint. Dissertation, University of Stuttgart; 2016.Google Scholar
  10. 10.
    Gurson AL. Continuum theory of ductile rupture by void nucleation and growth, Part I – yield criteria and flow rules for porous ductile media. J Eng Mater Technol. 1977;99:2–15.CrossRefGoogle Scholar
  11. 11.
    Tvergaard V. On localization in ductile materials containing spherical voids. Int J Fract. 1982;18:237–52.Google Scholar
  12. 12.
    Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984;38:157–69.CrossRefGoogle Scholar
  13. 13.
    Tvergaard V. Influence of void nucleation on ductile shear fracture at a free surface. J Mech Phys Solids. 1982;30:399–425.CrossRefMATHGoogle Scholar
  14. 14.
    Tvergaard V, Needleman A. The modified Gurson model. In: Handbook of materials behaviour models. New York: Academic; 2001. p. 430–5.CrossRefGoogle Scholar
  15. 15.
    Needleman A, Rice JR. Limits to ductility by plastic flow localization. In: Mechanics of metal sheet forming. New York: Plenum Press; 1978. p. 237–67.CrossRefGoogle Scholar
  16. 16.
    Chu CC, Needleman A. Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol. 1980;102:249–56.CrossRefGoogle Scholar
  17. 17.
    Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech ASME. 1987;54:525–31.CrossRefMATHGoogle Scholar
  18. 18.
    Xia L, Shih CF. Ductile crack growth – III. Transition to cleavage fracture incorporating statistics. J Mech Phys Solids. 1996;44:603–39.CrossRefGoogle Scholar
  19. 19.
    Steglich D. Structure damage simulation. In: Roters F, Barlat F, Chen LQ, editors. Continuum scale simulation of engineering materials: fundamentals – microstructures – process applications. Weinheim: Wiley-VCH; 2004.Google Scholar
  20. 20.
    Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960;8:100–4.CrossRefGoogle Scholar
  21. 21.
    Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech. 1962;7:55–129.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hillerborg A, Modéer M, Petersson P-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res. 1976;6:773–82.CrossRefGoogle Scholar
  23. 23.
    Needleman A. An analysis of decohesion along an imperfect interface. Int J Fract. 1990;42:21–40.CrossRefGoogle Scholar
  24. 24.
    Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids. 1992;40:1377–97.CrossRefMATHGoogle Scholar
  25. 25.
    Scheider I. Bruchmechanische Bewertung von Laserschweißverbindungen durch numerische Rissfortschrittsimulation mit dem Kohäsivzonenmodell. Dissertation, TU Hamburg-Harburg, Geesthacht; 2001.Google Scholar
  26. 26.
    ABAQUS Theory manual 6.11. Hibbitt, Karlsson & Sorensen. 2011.Google Scholar
  27. 27.
    ASTM E 1820–96. Standard test method for measurement of fracture toughness. In: Annual book of ASTM standards, vol. 03.01. Philadelphia: American Society for Testing and Materials. 1996.Google Scholar
  28. 28.
    Tu H, Schmauder S, Weber U. Numerical study of electron beam welded butt joints with the GTN model. Comput Mech. 2012;50:245–55.CrossRefMATHGoogle Scholar
  29. 29.
    Tu HY, Schmauder S, Weber U. Simulation of the fracture behavior of an S355 electron beam welded joint by cohesive zone modeling. Eng Fract Mech. 2016;163:303–12.CrossRefGoogle Scholar
  30. 30.
    Schwalbe K-H, Scheider I, Cornec A. SIAM CM09 – the SIAM method for application cohesive models of the damage behaviour of engineering materials and structures. GKSS report, 2009/1, GKSS-Forschungszentrum Geesthacht; 2009.Google Scholar
  31. 31.
    Chen CR, Kolednik O, Scheider I, Siegmund T, Tatschl A, Fischer FD. On the determination of the cohesive zone parameters for the modelling of microductile crack growth in thick specimens. Int J Fract. 2003;120:417–536.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Institute for Materials Testing, Materials Science and Strength of Materials (IMWF)University of StuttgartStuttgartGermany

Personalised recommendations