Skip to main content

Fatigue Behavior of 9–12% Cr Ferritic-Martensitic Steel

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

In this chapter, the cyclic fatigue behavior of the 9–12%Cr ferritic-martensitic steel used in power plants is systematically summarized. At first, the application background and the basic information of these kinds of materials are discussed. The 9–12%Cr martensitic steel has been extensively used in the supercritical steam turbine components in the thermal power plants. The fully understanding of the effects of materials properties and softening behavior on low cycle fatigue (LCF) are important in the improvement of structural design and the reliability assessment for its safety operation. Subsequently, the LCF properties, the nucleation and growth of fatigue crack, and the evolution of microstructure are further discussed. The previous research results and the factors that affect the LCF behavior are also summarized in these sections. Lastly, a brief summary of the chapter and the new research method related to the fatigue behavior of 9–12%Cr ferritic-martensitic steel are introduced for further investigating. This chapter serves as a quick reference of entering the fatigue behavior of materials for researchers, engineers, and students in the mechanical and materials engineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hayakawa M, Hara T, Matsuoka S, Tsuzaki K. Microstructural observation of tempered martensite in medium-carbon low-alloy steel by atomic force microscopy. J Jpn Inst Metals. 2000;64(6):460–6. in Japanese.

    Article  Google Scholar 

  2. Rouffié AL, Crépin J, Sennour M, Tanguy B, Pineau A, Hamon D, Wident P, Vincent S, Garat V, Fournier B. Effect of the thermal ageing on the tensile and impact properties of a 18% Cr ODS ferritic steel. J Nucl Mater. 2014;445:37–42.

    Article  Google Scholar 

  3. Li DM, Kim KW, Lee CS. Low cycle fatigue data evaluation for a high-strength spring steel. Int J Fatigue. 1997;19:607–12.

    Article  Google Scholar 

  4. Armas AF, Petersen C, Schmitt R, Avalos M, Alvarez I. Cyclic instability of martensite laths in reduced activation ferritic-martensitic steels. J Nucl Mater. 2004;329–333:252–6.

    Article  Google Scholar 

  5. Keller C, Margulies MM, Hadjem-Hamouche Z, Guillot I. Influence of the temperature on the tensile behaviour of a modified 9Cr-1Mo T91 martensitic steel. Mater Sci Eng A. 2010;527(24–25):6758–64.

    Article  Google Scholar 

  6. Choudhary BK, Srinivasan VS, Mathew MD. Influence of strain rate and temperature on tensile properties of 9Cr-1Mo ferritic steel. Mater High Temp. 2011;28(2):155–61.

    Article  Google Scholar 

  7. Batista MN, Marinelli MC, Herenu S, Alvarez-Armas I. The role of microstructure in fatigue crack initiation of 9–12% Cr reduced activation ferritic-martensitic steel. Int J Fatigue. 2015;72:75–9.

    Article  Google Scholar 

  8. Gerber H. Bestimmung der zulassigen Spannungen in Eisen-konstructionen. Z Bayer Architeckten Ingenieur-Vereins. 1874;6:101.

    Google Scholar 

  9. Goodman J. Mechanics applied to engineering. London: Longmans Green; 1899.

    MATH  Google Scholar 

  10. Soderberg CR. Factor of safety and working stress. Trans Am Soc Mech Eng. 1939;52:13–28.

    Google Scholar 

  11. Kovacs S, Beck T, Singheiser L. Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime. Int J Fatigue. 2013;49:90–9.

    Article  Google Scholar 

  12. Sakai T, Sato Y, Nagano Y, Takeda M, Oguma N. Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading. Int J Fatigue. 2006;28:1547–54.

    Article  MATH  Google Scholar 

  13. Sivaprasad S, Paul SK, Das A, Narasaiah N, Tarafder S. Cyclic plastic behaviour of primary heat transport piping materials: influence of loading schemes on hysteresis loop. Mater Sci Eng A. 2010;527:6858–69.

    Article  Google Scholar 

  14. Lefebvre D, Ellyin F. Cyclic response and inelastic strain energy in low cycle fatigue. Int J Fatigue. 1984;6:9–15.

    Article  Google Scholar 

  15. Dutta K, Ray KK. Ratcheting phenomenon and post-ratcheting tensile behaviour of an aluminum alloy. Mater Sci Eng A. 2012;540:30–7.

    Article  Google Scholar 

  16. Kang GZ, Liu YJ, Dong YW, Gao Q. Uniaxial ratcheting behaviors of metals with different crystal structures or values of fault energy: macroscopic experiments. J Mater Sci Technol. 2011;127:453–9.

    Article  Google Scholar 

  17. Hussain K, De Los Rios ER. Monotonic and cyclic stress-strain behavior of high strength steel. Metall Sci Technol. 1993;11:2–30.

    Google Scholar 

  18. Miner MA. Cumulative damage in fatigue. J Appl Mech. 1945;67:159–64.

    Google Scholar 

  19. Chaboche JL, Lesne PM. A non-linear continuous fatigue damage model. Fatigue Fract Eng Mater Struct. 1988;11(1):1–17.

    Article  Google Scholar 

  20. Basquin OH. The exponential law of endurance tests. Proc ASTM ASTEA. 1910;10:625–30.

    Google Scholar 

  21. Coffin LF, Tavernelli JF. The cyclic straining and fatigue of metals. Trans ASME. 1954;76:931–50.

    Google Scholar 

  22. Manson SS. Behaviour of materials under conditions of thermal stress. NACA, Tech Note-2933; 1954.

    Google Scholar 

  23. Wöhler A. Versuche liber die Festigkeit der Eisenbahnwagenachsen. Zeitschrift fur Bauwesen 10; English summary (1867). Engineering 1860;4:160–1.

    Google Scholar 

  24. Liu R, Zhang ZJ, Zhang P, Zhang ZF. Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: damage mechanisms and life prediction. Acta Mater. 2015;83:341–56.

    Article  Google Scholar 

  25. Shao CW, Zhang P, Liu R, Zhang ZJ, Pang JC, Zhang ZF. Low-cycle and extremely-low- cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction. Acta Mater. 2016;103:781–95.

    Article  Google Scholar 

  26. Wood WA. Formation of fatigue cracks. Philos Mag. 1958;3:692–9.

    Article  Google Scholar 

  27. Shankar V, Bauer V, Sandhya R, et al. Low cycle fatigue and thermo-mechanical fatigue behavior of modified 9Cr-1Mo derritic steel at elevated temperature. J Nucl Mater. 2012;420(1–3):23–30.

    Article  Google Scholar 

  28. Mughrabi H. Cyclic slip irreversibilities and the evolution of fatigue damage. Metall Mater Trans A. 2009;40:1257–79.

    Article  Google Scholar 

  29. Paris PC, Gomez MP, Anderson WP. A rational analytic theory of fatigue. Trend Eng. 1961;13(1):9–14.

    Google Scholar 

  30. Paris PC, Erdogan F. A critical analysis of crack propagation laws. J Basic Eng. 1963;85(5):528–34.

    Article  Google Scholar 

  31. Forsyth PJE. A two stage process of fatigue crack growth. In: Crack propagation: proceedings of Cranfield symposium. London: Her Majesty’s Stationery Office; 1962. p. 76–94.

    Google Scholar 

  32. Tomkins B. Fatigue crack propagation-an analysis. Philos Mag. 1968;18(155):1041–66.

    Article  Google Scholar 

  33. Wareing J, Vaughan HG. The relationship between striation spacing, macroscopic crack growth rate and the low-cycle fatigue life of a type 316 stainless steel at 625°C. Met Sci. 1977;11:439–46.

    Article  Google Scholar 

  34. Wareing J, Vaughan HG, Tomkins B. Mechanisms of elevated temperature fatigue failure in type 316 stainless steel. In: ASME fall meeting, Millaukee, Sept 1979.

    Google Scholar 

  35. Cotterill PJ, Knott JF. In: Environmental contributions of fatigue crack growth in a 9%Cr and 1% Mo steel, Proceedings of international conference on fatigue thresholds, vol. 3. Honolulu; 1990. p. 1686–1863.

    Google Scholar 

  36. Duquette DJ, Uhlig HH. Effect of dissolved oxygen and NaCl on corrosion fatigue of 0.18% carbon steel. Trans ASM. 1968;61:449–56.

    Google Scholar 

  37. Fournier B, Sauzay M, Renault A, Barcelo F, Pineau A. Microstructural evolutions and cyclic softening of 9%Cr martensitic steels. J Nucl Mater. 2009;386–388:71–4.

    Google Scholar 

  38. Sauzay M, Brillet H, Monnet I, Mottot M, Barcelo F, Fournier B, Pineau A. Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel. Mater Sci Eng A. 2005;400–401:241–4.

    Article  Google Scholar 

  39. Fournier B, Sauzay M, Caës C, Mottot M, Noblecourt M, Pineau A. Analysis of the hysteresis loops of a martensitic steel: part II: study of the influence of creep and stress relaxation holding times on cyclic behaviour. Mater Sci Eng A. 2006;437:197–211.

    Article  Google Scholar 

  40. Isik MI, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels. Acta Mater. 2014;81:230–40.

    Article  Google Scholar 

  41. Alvarez-Armas I, Armas AF, Herenu S, Degallaix S, Degallaix G. Correlation between cyclic deformation behaviour and microstructure in a duplex steel between 300 and 773 K. Fatigue Fract Eng Mater Struct. 2003;26:27–35.

    Article  Google Scholar 

  42. Taylor GI. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc R Soc Lond. 1934;145:362–87.

    Article  MATH  Google Scholar 

  43. Franciosi P, Berveiller M, Zaoui A. Latent hardening in copper and aluminium single crystals. Acta Metall. 1980;28:273–83.

    Article  Google Scholar 

  44. Klaar H, Schwaab P, Osterle W. Round robin investigation into the quantitative measurement of dislocation density in the electron microscope. Pract Metallogr. 1992;29:3–25.

    Google Scholar 

  45. Ungár T, Borbély A. The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl Phys Lett. 1996;69:3173–5.

    Article  Google Scholar 

  46. Giordana MF, Giroux PF, Alvarez-Armas I, Sauzayb M, Armas A, Kruml T. Microstructure evolution during cyclic tests on EUROFER 97 at room temperature. TEM observation and modeling, Mater Sci Eng A. 2012;550:103–111.

    Google Scholar 

  47. Giordana MF, Alvarez-Armas I, Armas A. Microstructural characterization of EUROFER 97 during low-cycle fatigue. J Nucl Mater. 2012;424:247–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, Z., Hu, Z., Schmauder, S. (2018). Fatigue Behavior of 9–12% Cr Ferritic-Martensitic Steel. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics