Skip to main content

Damping Characteristics of Shape Memory Alloys on Their Inherent and Intrinsic Internal Friction

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 441 Accesses

Abstract

In this chapter, damping characteristics of the inherent and intrinsic internal friction (IFPT + IFI) peaks for Ti50Ni50, Ti50Ni50-xCux, Ti50Ni50-xFex, Ni2MnGa, Ni-Mn-Ti, and Cu-Al-Ni shape memory alloys (SMAs) are reviewed. Ti50Ni50 SMA exhibits obvious (IFPT + IFI) peaks with tan δ above 0.02 during martensitic transformations, but they only exist in a narrow and low temperature range. Ti50Ni50-xCux (x ≥ 10) SMAs show higher (IFPT + IFI) peaks than Ti50Ni50 SMA because B19 martensite in Ti50Ni50-xCux SMAs is originated by substituting Ni with Cu atoms while R-phase in Ti50Ni50 SMA is caused by the introduction of abundant defects/dislocations. Ti50Ni48Fe2 and Ti50Ni47Fe3 SMAs also exhibit higher (IFPT + IFI) peaks than Ti50Ni50 SMA because R-phase formation is due to the substitution of Ni by Fe atoms rather than induced by introduced dislocations. However, the martensitic transformation temperatures of Ti50Ni50-xFex SMAs are suppressed to lower temperatures simultaneously by the addition of Fe atoms. Ni-Mn-Ti and Ni-Mn-Ga magnetic SMAs both exhibit relatively high martensitic transformation temperatures. Unfortunately, the undesirable brittle nature of Ni-Mn-Ti and Ni-Mn-Ga SMAs critically limits their workability and high-damping applications. Cu-Al-Ni SMAs exhibit acceptable martensitic transformation temperatures and good workability; however, their (IFPT + IFI) peaks are relatively low. Among these various types of SMAs, Ti50Ni40Cu10 SMA is more suitable for high-damping applications because it possesses the advantages of high (IFPT + IFI) peaks, adequate workability, and an acceptable martensitic transformation temperature near room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dowling NE. Mechanical behavior of materials. 2nd ed. Upper Saddle River: Prentice Hall; 1999. p. 757–60.

    Google Scholar 

  2. Lakes R. Viscoelastic materials. New York: Cambridge University Press; 2009. p. 1–13.

    Book  Google Scholar 

  3. Van Humbeeck J, Stoiber J, Delaey L, Gotthardt R. The high damping capacity of shape memory alloys. Z Met. 1995;86:176–83.

    Google Scholar 

  4. Delorme JF, Schmid R, Robin M, Gobin P. Frottement intérieur et microdéformation dans les transformations martensitiques. J Phys. 1971;32:C2-101–11.

    Google Scholar 

  5. Dejonghe W, De Batist R, Delaey L. Factors affecting the internal friction peak due to thermoelastic martensitic transformation. Scr Metall. 1976;10:1125–8.

    Article  Google Scholar 

  6. Zhu JS, Schaller R, Benoit W. Internal friction transitory effects associated with martensitic transformation in NiTi alloys. Phys Status Solidi A. 1988;108:613–8.

    Article  Google Scholar 

  7. Gremaud G, Bidaux JE, Benoit W. Etude à basse fréquence des pics de frottement intérieur associés à une transition de phase du 1er ordre. Helvetica Physica Acta. 1987;60:947–58.

    Google Scholar 

  8. Bidaux JE, Schaller R, Benoit W. Study of the h.c.p.-f.c.c. phase transition in cobalt by acoustic measurements. Acta Metall. 1989;37:803–11.

    Google Scholar 

  9. Mercier O, Melton KN, De Préville Y. Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi. Acta Metall. 1979;27:1467–75.

    Article  Google Scholar 

  10. Gotthardt R, Mercier O. Relation between the damping spectrum and the dislocation motion in martensitic alloys. J Phys. 1981;42:C5-995–C5-1000.

    Google Scholar 

  11. Menard KP. Dynamic mechanical analysis: a practical introduction. Boca Raton: CRC Press; 1999.

    Book  Google Scholar 

  12. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50:511–678.

    Article  Google Scholar 

  13. Wu SK, Lin HC, Chou TS. A study of electrical resistivity, internal friction and shear modulus on an aged Ti49Ni51 alloy. Acta Metall Mater. 1990;38:95–102.

    Article  Google Scholar 

  14. Lin HC, Wu SK, Yeh MT. Damping characteristics of TiNi shape memory alloys. Metall Mater Trans A. 1993;24:2189–94.

    Google Scholar 

  15. Liu Y, Van Humbeeck J, Stalmans R, Delaey L. Some aspects of the properties of NiTi shape memory alloy. J Alloys Compd. 1997;247:115–21.

    Article  Google Scholar 

  16. Coluzzi B, Biscarini A, Campanella R, Trotta L, Mazzolai G, Tuissi A, Mazzolai FM. Mechanical spectroscopy and twin boundary properties in a Ni50.8Ti49.2 alloy. Acta Mater. 1999;47:1965–76.

    Article  Google Scholar 

  17. Chang SH, Wu SK. Inherent internal friction of B2→R and R→B19′ martensitic transformations in equiatomic TiNi shape memory alloy. Scr Mater. 2006;55:311–4.

    Article  Google Scholar 

  18. Chang SH, Wu SK. Internal friction of B2→B19′ martensitic transformation of Ti50Ni50 shape memory alloy under isothermal conditions. Mater Sci Eng A. 2007;454-455:379–83.

    Article  Google Scholar 

  19. Chang SH, Wu SK. Internal friction of R-phase and B19′ martensite in equiatomic TiNi shape memory alloy under isothermal conditions. J Alloys Compd. 2007;437:120–6.

    Article  Google Scholar 

  20. Chang SH, Wu SK. Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analyzer. Mater Charact. 2008;59:987–90.

    Google Scholar 

  21. Chang SH, Wu SK. Isothermal effect on internal friction of Ti50Ni50 alloy measured by step cooling method in dynamic mechanical analyzer. J Alloys Compd. 2008;459:155–9.

    Article  Google Scholar 

  22. Nam TH, Saburi T, Shimizu K. Cu-content dependence of shape memory characteristics in Ti-Ni-cu alloys. Mater Trans. 1990;31:959–67.

    Article  Google Scholar 

  23. Nam TH, Saburi T, Nakata Y, Shimizu K. Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Mater Trans. 1990;31:1050–6.

    Google Scholar 

  24. Miyamato H, Taniwaki T, Ohba T, Otsuka K, Nishigori S, Kato K. Two-stage B2-B19-B19′ martensitic transformation in a Ti50Ni30Cu20 alloy observed by synchrotron radiation. Scr Mater. 2005;53:171–5.

    Article  Google Scholar 

  25. Nespoli A, Passaretti F, Villa E. Phase transition and mechanical damping properties: a DMTA study of NiTiCu shape memory alloys. Intermetallics. 2013;32:394–400.

    Article  Google Scholar 

  26. Ramachandran B, Tang RC, Chang PC, Kuo YK, Chien C, Wu SK. Cu-substitution effect on thermoelectric properties of the TiNi-based shape memory alloys. J Appl Phys. 2013;113:203702.

    Article  Google Scholar 

  27. Yoshida I, Monma D, Iino K, Otsuka K, Asai M, Ysuzuki H. Damping properties of Ti50Ni50−xCux alloys utilizing martensitic transformation. J Alloys Compd. 2003;355:79–84.

    Article  Google Scholar 

  28. Mazzolai FM, Biscarini A, Coluzzi B, Mazzolai G, Rotini A, Tuissi A. Internal friction spectra of the Ni40Ti50Cu10 shape memory alloy charged with hydrogen. Acta Mater. 2003;51:573–83.

    Article  Google Scholar 

  29. Fan G, Zhou Y, Otsuka K, Ren X, Nakamura K, Ohba T, Suzuki T, Yoshida I, Yin F. Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50−xCux shape memory alloys. Acta Mater. 2006;54:5221–9.

    Article  Google Scholar 

  30. Chang SH, Hsiao SH. Inherent internal friction of Ti50Ni50-xCux shape memory alloys measured under isothermal conditions. J Alloys Compd. 2014;586:69–73.

    Article  Google Scholar 

  31. Watanabe Y, Saburi T, Nakagawa Y, Nenno S. Self-accommodation structure in the Ti-Ni-cu orthorhombic martensite. J Jpn Inst Metals. 1990;54:861–9.

    Article  Google Scholar 

  32. Onda T, Bando Y, Ohba T, Otsuka K. Electron microscopy study of twins in martensite in a Ti-50.0 at % Ni alloy. Mater Trans. 1992;33:354–9.

    Article  Google Scholar 

  33. Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu YN. Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater Sci Eng A. 1999;273-275:658–63.

    Article  Google Scholar 

  34. Hwang CM, Wayman CM. Phase transformations in TiNiFe, TiNiAl and TiNi alloys. Scr Metall. 1983;17:1345–50.

    Article  Google Scholar 

  35. Goo E, Sinclair R. The B2 to R transformation in Ti50Ni47Fe3 and Ti49.5Ni50.5 alloys. Acta Metall. 1985;33:1717–23.

    Article  Google Scholar 

  36. Lin HC, Wu SK, Chang YC. Damping characteristics of Ti50Ni49.5Fe0.5 and Ti50Ni40Cu10 ternary shape memory alloys. Metall Mater Trans A. 1995;26:851–8.

    Google Scholar 

  37. Chang SH, Chien C, Wu SK. Damping characteristics of the inherent and intrinsic internal friction of Ti50Ni50-xFex (x = 2, 3, and 4) shape memory alloys. Mater Trans. 2016;57:351–6.

    Google Scholar 

  38. Webster PJ, Ziebeck KRA, Town SL, Peak MS. Magnetic order and phase transformation in Ni2MnGa. Philos Mag B. 1984;49:295–310.

    Article  Google Scholar 

  39. Kokorin VV, Chernenko VA. Martensitic transformation in a ferromagnetic Heusler alloy. Phys Met Metallogr. 1989;68:111–5.

    Google Scholar 

  40. Chernenko VA, Cesari E, Kokorin VV, Vitenko IN. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scr Metall Mater. 1995;33:1239–44.

    Article  Google Scholar 

  41. Wu SK, Yang ST. Effect of composition on transformation temperatures of Ni-Mn-Ga shape memory alloys. Mater Lett. 2003;57:4291–6.

    Google Scholar 

  42. Chang SH, Wu SK. Low-frequency damping properties of near-stoichiometric Ni2MnGa shape memory alloys under isothermal conditions. Scr Mater. 2008;59:1039–42.

    Article  Google Scholar 

  43. Böhm A, Roth S, Naumann G, Drossel WG, Neugebauer R. Analysis of structural and functional properties of Ni50Mn30Ga20 after plastic deformation. Mater Sci Eng A. 2008;481-482:266–70.

    Article  Google Scholar 

  44. Chernenko VA, Pons J, Seguí C, Cesari E. Premartensitic phenomena and other phase transformations in Ni–Mn–Ga alloys studied by dynamical mechanical analysis and electron diffraction. Acta Mater. 2002;50:53–60.

    Article  Google Scholar 

  45. Jee KK, Potapov PL, Song SY, Shin MC. Shape memory effect in NiAl and NiMn-based alloys. Scr Mater. 1997;36:207–12.

    Article  Google Scholar 

  46. Chang SH. Low frequency damping properties of a NiMnTi shape memory alloy. Mater Lett. 2011;65:134–6.

    Article  Google Scholar 

  47. Otsuka K, Shimizu K. Pseudoelasticity and shape memory effects in alloys. Int Metals Rev. 1986;31:93–114.

    Google Scholar 

  48. Chang SH. Internal friction of cu-13.5A-4Ni shape memory alloy measured by dynamic mechanical analysis under isothermal conditions. Mater Lett. 2010;64:93–5.

    Article  Google Scholar 

  49. Chang SH. Influence of chemical composition on the damping characteristics of cu-al-Ni shape memory alloys. Mater Chem Phys. 2011;125:358–63.

    Article  Google Scholar 

  50. Otsuka K, Shimizu K. Morphology and crystallography of thermoelastic cu-al-Ni martensite analyzed by the phenomenological theory. Mater Trans. 1974;15:103–8.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this research provided by the Ministry of Science and Technology (MOST) and National Taiwan University (NTU), Taiwan, under Grant Nos. MOST 103-2221-E-197-007, MOST 104-2221-E-002-004, and NTU 105R891803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Kaan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chang, SH., Wu, SK. (2018). Damping Characteristics of Shape Memory Alloys on Their Inherent and Intrinsic Internal Friction. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics