Skip to main content

Nanoindentation and Indentation Size Effects: Continuum Model and Atomistic Simulation

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

Nanoindentation is one of the most widely used methods to measure the mechanical properties of materials at the nanoscale. For spherical indenters, when radius decreases, the hardness increases. The phenomenon is known as the indentation size effect (ISE). Nix and Gao developed a continuum model to explain the ISE in microindentation. However, the model overestimates the hardness at the nanoscale. The objective of this study is to develop proper methods to probe key quantities such as hardness and geometric necessary dislocation (GND) density from the quasi-static version of molecular dynamics (MD) simulations and to develop a mechanism-based model to elucidate the ISE phenomenon at the nanoscale. A reliable method is presented to extract the GND directly from dislocation length and the volume of plastic zone in the MD simulations. We conclude that the hardness determined directly from MD simulations matches well with the hardness determined from the Oliver–Pharr method. The ISE can be observed directly from the MD simulations without any free parameters. The model by Swadener et al. rooted from the Nix and Gao model underestimates the GND density at the nanoscale. However, this model can accurately predict the hardness size effects in nanoindentation if it uses the GND density directly calculated from the MD simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Feng G, Nix WD. Indentation size effect in MgO. Scr Mater. 2004;51(6):599–603.

    Article  Google Scholar 

  2. Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact. 2002;48(1):11–36.

    Article  Google Scholar 

  3. Mook WM, et al. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology. 2010;21(5):055701.

    Article  Google Scholar 

  4. Fischer-Cripps AC, SpringerLink (Online service). Nanoindentation. 3rd ed. Mechanical engineering series 1. New York: Springer; 2011. 

    Google Scholar 

  5. Pharr GM. Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng A. 1998;253(1–2):151–9.

    Article  Google Scholar 

  6. Pethicai J, Hutchings R, Oliver W. Hardness measurement at penetration depths as small as 20 nm. Philos Mag A. 1983;48(4):593–606.

    Article  Google Scholar 

  7. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(06):1564–83.

    Article  Google Scholar 

  8. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19(1): 3–20.

    Article  Google Scholar 

  9. Lee C, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.

    Article  Google Scholar 

  10. Li X, et al. Nanoindentation of silver nanowires. Nano Lett. 2003;3(11):1495–8.

    Article  Google Scholar 

  11. Turner CH, et al. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999;32(4):437–41.

    Article  Google Scholar 

  12. Zhu T, Li J. Ultra-strength materials. Prog Mater Sci. 2010;55(7):710–57.

    Article  Google Scholar 

  13. Shan ZW, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater. 2008;7(2):115–9.

    Article  Google Scholar 

  14. Greer JR. Bridging the gap between computational and experimental length scales: a review on nanoscale plasticity. Rev Adv Mater Sci. 2006;13(1):59–70.

    Google Scholar 

  15. Ashby MF. Deformation of plastically non-homogeneous materials. Philos Mag. 1970;21(170): 399.

    Article  Google Scholar 

  16. Nye JF. Some geometrical relations in dislocated crystals. Acta Metall. 1953;1(2):153–62.

    Article  Google Scholar 

  17. Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46(3):411–25.

    Article  MATH  Google Scholar 

  18. Tymiak NI, et al. Plastic strain and strain gradients at very small indentation depths. Acta Mater. 2001;49(6):1021–34.

    Article  Google Scholar 

  19. Baker SP, Vinci RP, Arias T. Elastic and anelastic behavior of materials in small dimensions. MRS Bull. 2002;27(1):26–9.

    Article  Google Scholar 

  20. Elmustafa AA, Stone DS. Indentation size effect in polycrystalline F.C.C. metals. Acta Mater. 2002;50(14):3641–50.

    Article  Google Scholar 

  21. Gerberich WW, et al. Interpretations of indentation size effects. J Appl Mech-Trans ASME. 2002;69(4):433–42.

    Article  MATH  Google Scholar 

  22. Choi Y, et al. Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J Appl Phys. 2003;94(9):6050–8.

    Article  Google Scholar 

  23. Elmustafa AA, Stone DS. Nanoindentation and the indentation size effect: kinetics of deformation and strain gradient plasticity. J Mech Phys Solids. 2003;51(2):357–81.

    Article  MATH  Google Scholar 

  24. Peng Z, Gong J, Miao H. On the description of indentation size effect in hardness testing for ceramics: analysis of the nanoindentation data. J Eur Ceram Soc. 2004;24(8):2193–201.

    Article  Google Scholar 

  25. Durst K, Backes B, Göken M. Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater. 2005;52(11):1093–7.

    Article  Google Scholar 

  26. Soer WA, Aifantis KE, De Hosson JTM. Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 2005;53(17):4665–76.

    Article  Google Scholar 

  27. Yang B, Vehoff H. Grain size effects on the mechanical properties of nanonickel examined by nanoindentation. Mater Sci Eng A. 2005;400–401(Suppl 1–2):467–70.

    Article  Google Scholar 

  28. Lilleodden ET, Nix WD. Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Mater. 2006;54(6):1583–93.

    Article  Google Scholar 

  29. Wang JL, et al. Size effect in contact compression of nano- and microscale pyramid structures. Acta Mater. 2006;54(15):3973–82.

    Article  Google Scholar 

  30. Abu Al-Rub RK. Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech Mater. 2007;39(8):787–802.

    Article  Google Scholar 

  31. Durst K, Goken M, Pharr GM. Indentation size effect in spherical and pyramidal indentations. J Phys D-Appl Phys. 2008;41(7):074005.

    Article  Google Scholar 

  32. Demir E, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 2009;57(2):559–69.

    Article  Google Scholar 

  33. Qiao XG, Starink MJ, Gao N. The influence of indenter tip rounding on the indentation size effect. Acta Mater. 2010;58(10):3690–700.

    Article  Google Scholar 

  34. Swadener JG, George EP, Pharr GM. The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids. 2002;50(4):681–94.

    Article  MATH  Google Scholar 

  35. Stelmashenko NA, et al. Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater. 1993;41(10):2855–65.

    Article  Google Scholar 

  36. McElhaney KW, Vlassak JJ, Nix WD. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res. 1998;13(05):1300–6.

    Article  Google Scholar 

  37. Durst K, et al. Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006;54(9): 2547–55.

    Article  Google Scholar 

  38. Huang Y, et al. A nano-indentation model for spherical indenters. Model Simul Mater Sci Eng. 2007;15(1):S255.

    Article  Google Scholar 

  39. Li X, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature. 2010;464(7290):877–80.

    Article  Google Scholar 

  40. Kallman JS, et al. Molecular dynamics of silicon indentation. Phys Rev B Condens Matter. 1993;47(13):7705–9.

    Article  Google Scholar 

  41. Horstemeyer MF, Baskes MI, Plimpton SJ. Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 2001;49(20):4363–74.

    Article  Google Scholar 

  42. Liang HY, et al. Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation. CMES-Comput Model Eng Sci. 2004;6(1):105–14.

    MATH  Google Scholar 

  43. Lee Y, et al. Atomistic simulations of incipient plasticity under Al(1 1 1) nanoindentation. Mech Mater. 2005;37(10):1035–48.

    Article  Google Scholar 

  44. Yamakov V, et al. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 2001;49(14):2713–22.

    Article  Google Scholar 

  45. Gannepalli A, Mallapragada SK. Atomistic studies of defect nucleation during nanoindentation of Au(001). Phys Rev B. 2002;66(10):1041031–9.

    Article  Google Scholar 

  46. Lilleodden ET, et al. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J Mech Phys Solids. 2003;51(5):901–20.

    Article  MATH  Google Scholar 

  47. Nair AK, et al. Size effects in indentation response of thin films at the nanoscale: a molecular dynamics study. Int J Plast. 2008;24(11):2016–31.

    Article  MATH  Google Scholar 

  48. Gao Y, et al. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J Mech Phys Solids. 2015;75(0):58–75.

    Article  Google Scholar 

  49. Honeycutt JD, Andersen HC. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem. 1987;91(19):4950–63.

    Article  Google Scholar 

  50. Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation. Phys Rev B. 1998;58(17):11085–8.

    Article  Google Scholar 

  51. Ackland GJ, Jones AP. Applications of local crystal structure measures in experiment and simulation. PhRvB. 2006;73(5). 

    Google Scholar 

  52. Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng. 2010;18(8):085001.

    Article  Google Scholar 

  53. Shewchuk JR. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. 1996;1148:203–22. 

    Google Scholar 

  54. Taylor GI. Plastic strain in metals. J Inst Met. 1938;62:307–24.

    Google Scholar 

  55. Dieter GE, Bacon DJ. Mechanical metallurgy. New York: McGraw-Hill; 1988.

    Google Scholar 

  56. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. JCoPh. 1995;117(1):1–19. https://doi.org/10.1006/jcph.1995.1039.

  57. Baskes MI. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B. 1992;46(5):2727–42.

    Article  Google Scholar 

  58. Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals cu, ag, au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33(12):7983–91.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science and Technology in Taiwan. We are also grateful to the National Center for High-Performance Computing for providing the computational resources required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuin-Shan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yu, CH., Lin, KP., Chen, CS. (2018). Nanoindentation and Indentation Size Effects: Continuum Model and Atomistic Simulation. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics