Skip to main content

Indentation Behavior of Metallic Glass Via Molecular Dynamics Simulation

  • Living reference work entry
  • First Online:
  • 487 Accesses

Abstract

Metallic glasses, also known as glassy metals, exhibit unique mechanical properties in terms of their strength and ductility due to their noncrystalline microstructures. By performing molecular dynamics simulations, thin-film metallic glasses can be prepared by simulated sputter deposition processes. The deposition simulations were conducted with a tight-binding interatomic potential, and argon working gas was modeled by the pair-wise Moliere potential. The atomic structures of the glasses are verified by the radial distribution functions. After deposition simulation and suitable equilibration, the deposited amorphous films were simulated for their indentation properties by a right-angle conical indenter tip at selected temperatures. The hardness and Young’s modulus of the glasses show strong temperature dependence. The calculated pileup index of the films may be used to indicate the glass transition temperature.

This is a preview of subscription content, log in via an institution.

References

  1. Chu JP, Jang JSC, Huang JC, Chou HS, Yang Y, Ye JC, Wang Y-C, Lee JW, Liu FX, Liaw PK, Chen YC, Lee CM, Li CL, Rullyani C. Thin film metallic glasses: unique properties and potential applications. Thin Solid Films. 2012;520:5097–122.

    Article  Google Scholar 

  2. Chu JP, Huang JC, Jang JSC, Wang Y-C, Liaw PK. Thin film metallic glasses: preparations, properties and applications. JOM. 2010;62:19–24.

    Article  Google Scholar 

  3. Yu P, Bai HY. Poisson’s ratio and plasticity in CuZrAl bulk metallic glasses. Mater Sci Eng A. 2008;485:1–4.

    Article  Google Scholar 

  4. Pauly S, Liu G, Wang G, Kuhn U, Mattern N, Eckert J. Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater. 2009;57:5445–53.

    Article  Google Scholar 

  5. Wang YC, Wu CY. Molecular dynamics simulation of Cu-Zr-Al metallic-glass films under indentation. Thin Solid Films. 2014;561:114–9.

    Article  Google Scholar 

  6. Wang YC, Wu CY. Evolution of mechanical anisotropy in nano-scale metallic-glass thin films under indentation. Procedia Eng. 2014;79:575–8.

    Article  Google Scholar 

  7. Wu CY, Wang YC, Chen C. Indentation properties of Cu–Zr–Al metallic-glass thin films at elevated temperatures via molecular dynamics simulation. Comput Mater Sci. 2015;102:234–42.

    Article  Google Scholar 

  8. Waseda Y. The structure of non-crystalline materials – liquid and amorphous solids. New York: McGraw-Hill; 1980.

    Google Scholar 

  9. Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci. 2011;56:379–473.

    Article  Google Scholar 

  10. Sheng SW, Luo WK, Alamgir FM, Bai J, Ma E. Atomic packing and short-to-medium-range order in metallic glasses. Nature. 2006;439:419–25.

    Article  Google Scholar 

  11. Zhang Y, Mattern N, Eckert J. Effect of uniaxial loading on the structural anisotropy and the dynamics of atoms of Cu50Zr50 metallic glasses within the elastic regime studied by molecular dynamics simulation. Acta Mater. 2011;59:4303–13.

    Article  Google Scholar 

  12. Wu Y, Wang H, Wu HH, Zhang ZY, Hui XD, Chen GL, Ma D, Wang XL, Lu ZP. Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties. Acta Mater. 2011;59:2928–36.

    Article  Google Scholar 

  13. Fornell J, Baro MD, Surinach S, Gebert A, Sort J. The influence of deformation-induced martensitic transformation on the mechanical properties of nanocomposite Cu-Zr-(Al) systems. Adv Eng Mater. 2011;13:57–63.

    Article  Google Scholar 

  14. Hwang J, Melgarejo ZH, Kalay YE, Kalay I, Kramer MJ, Stone S, Voyles PM. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys Rev Lett. 2012;108:195505.

    Article  Google Scholar 

  15. Wang ZT, Pan J, Li Y, Schuh CA. Densification of strain hardening of a metallic glass under tension at room temperature. Phys Rev Lett. 2013;111:135504.

    Article  Google Scholar 

  16. Ramamurty U, Jana S, Kawamura Y, Chattopadhyay K. Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 2005;53:705–17.

    Article  Google Scholar 

  17. Liu FX, Gao YF, Liaw PK. Rate-dependent deformation behavior of Zr-based metallic-glass coatings examined by Nanoindentation. Metall Mater Trans A. 2008;39:1862–7.

    Article  Google Scholar 

  18. Wang YC, Wu CY, Chen C, Yang DS. Molecular dynamics studies of interaction between hydrogen and carbon nano-carriers. Coupled Syst Mech. 2014;3:329–44.

    Article  Google Scholar 

  19. Shi Y, Falk ML. Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 2007;55:4317–24.

    Article  Google Scholar 

  20. Wang YC, Wu CY, Chu JP, Liaw PK. Indentation behavior of Zr-based metallic-glass films via molecular-dynamics simulations. Metall Mater Trans. 2010;41A:3010–7.

    Article  Google Scholar 

  21. Wu CY, Wang YC. Mechanical behavior of polycrystalline aluminum under penetration with extremely large loading rates via molecular dynamics simulation. Appl Mech Mater. 2014;566:167–72.

    Article  Google Scholar 

  22. Chu JP, Wang YC. Sputter-deposited Cu/Cu(O) multilayers exhibiting enhanced strength and tunable modulus. Acta Mater. 2010;58:6371–8.

    Article  Google Scholar 

  23. Lin HC, Chang JG, Ju SP, Hwang CC. A general consideration of incident impact energy accumulation in molecular dynamics thin film simulations – a new approach using thermal control layer marching algorithm. Proc R Soc A. 2005;461:3977–98.

    Article  Google Scholar 

  24. Iwasaki T. Molecular dynamics study of adhesion strength and diffusion at interfaces between interconnect materials and underlay materials. Comput Mech. 2000;25:78–86.

    Article  MATH  Google Scholar 

  25. Cleri F, Rosato V. Tight-binding potentials for transition metals and alloys. Phys Rev B. 1993;48:22–33.

    Article  Google Scholar 

  26. Allen MP, Tildesley DJ. Computer simulation of liquids. New York: Oxford University Press; 1987. p. 21.

    MATH  Google Scholar 

  27. Plimpton S. Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys. 1995;117:1–19.

    Article  MATH  Google Scholar 

  28. Muller K-H. Ion-beam-induced epitaxial vapor-phase growth: a molecular dynamics study. Phys Rev B. 1987;35:7906–13.

    Article  Google Scholar 

  29. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinement to methodology. J Mater Res. 2004;19:3–20.

    Article  Google Scholar 

  30. Porter DA, Easterling KE. Phase transformations in metals and alloys. 2nd ed. Boca Raton: CRC Press; 2004.

    Google Scholar 

  31. Inoue A, Zhang W. Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Mater Trans. 2002;43:2921–5.

    Article  Google Scholar 

  32. Castellero A, Baser TA, Das J, Matteis P, Eckert J, Battezzati L, Baricco M. Role of crystalline precipitates on the mechanical properties of (Cu0.50Zr0.50)100−xAlx (x=4, 5, 7) bulk metallic glasses. J Alloys Compd. 2011;509S:S99–S104.

    Article  Google Scholar 

  33. Amara H, Roussel J-M, Bichara C, Gaspard J-P, Ducastelle F. Tight-binding potential for atomistic simulations of carbon interacting with transition metals: application to the Ni-C system. Phys Rev B. 2009;79:014109.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for research grants from Taiwan Ministry of Science and Technology. This research received funding from the Headquarters of University Advancement at the National Cheng Kung University, which is sponsored by the Ministry of Education, Taiwan, ROC. We are also grateful to the National Center for High-Performance Computing for computer time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Che Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wu, CY., Wang, YC. (2018). Indentation Behavior of Metallic Glass Via Molecular Dynamics Simulation. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics