Modeling Dislocation in Binary Magnesium-Based Alloys Using Atomistic Method

Living reference work entry


In the wake of developing biodegradable metallic implants for orthopedic practice or lightweight structural components for the automotive industry, both fundamental and applied research on magnesium and its alloys regained a high interest in the last decade. As of today, the major issues delaying the integration of the magnesium technology in the medical and automotive industries are (i) a lack of ductility and (ii) a poor corrosion resistance. Alloying is a common strategy used to improve the ductility and the corrosion resistance. Although density functional theory is a powerful method that allows one to quantify material parameters to be used later in a theoretical model, atomistic methods in the framework of semi-empirical potentials are complementary to density functional theory. While the data obtained from semi-empirical potentials are more qualitative than quantitative, it does not prevent atomistic calculations in the framework of semi-empirical potentials to validate/disprove/enrich an existing theoretical model or even to provide insights for the development of a new theoretical model. The validity of the data derived from atomistic calculations in the framework of semi-empirical potentials depends on the accuracy and transferability of the potentials to capture the physics involved in the problem. In view of modeling the mechanical properties of a binary magnesium-based alloy using semi-empirical potentials, one has to validate the ability of the potentials to capture the physics governing the interactions between the alloying element and the micromechanisms carrying the inelastic behavior. In this chapter, we are reviewing the interaction between alloying elements and (i) stacking faults and (ii) <a> dislocations from the basal and prismatic slip systems.



The author acknowledges the MIRACLE Project at the University of Basel funded by the Werner Siemens Foundation, Zug/Switzerland.

Supplementary material


  1. 1.
    Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.CrossRefGoogle Scholar
  2. 2.
    Friedrich HE, Mordike BL. Magnesium technology: metallurgy, design data, application. Berlin: Springer; 2006.Google Scholar
  3. 3.
    Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.CrossRefGoogle Scholar
  4. 4.
    Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.CrossRefGoogle Scholar
  5. 5.
    Harrison R, Maradze D, Lyons S, Zheng Y, Liu Y. Corrosion of magnesium and magnesium-calcium alloy in biologically-simulated environment. Prog Nat Sci Mater Int. 2014;24:539–46.CrossRefGoogle Scholar
  6. 6.
    Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2014;77:1–34.CrossRefGoogle Scholar
  7. 7.
    Wu Z, Curtin WA. The origin of high hardening and low ductility in magnesium. Nature. 2015;526:62–7.CrossRefGoogle Scholar
  8. 8.
    Kim Y-M, Kim NJ, Lee B-J. Atomistic modeling of pure Mg and Mg-Al systems. CALPHAD Comp Coupl Phase Diagrams Thermo. 2009;33:650–7.Google Scholar
  9. 9.
    Wu Z, Francis MF, Curtin WA. Magnesium interatomic potential for simulating plasticity and fracture phenomena. Model Simul Mater Sci Eng. 2015;23:015004.CrossRefGoogle Scholar
  10. 10.
    Groh S. Modified embedded-atom potential for B2-MgAg. Simul Mater Sci Eng. 2016;24:065011.CrossRefGoogle Scholar
  11. 11.
    Karewar SV, Gupta N, Caro A, Srinivasan SG. A concentration dependent embedded atom method potential for the Mg-Li system. Comput Mater Sci. 2014;85:172–8.CrossRefGoogle Scholar
  12. 12.
    Mendelev MI, Asta M, Rahman MJ, Hoyt JJ. Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys. Phil Mag. 2009;89:3269–85.CrossRefGoogle Scholar
  13. 13.
    Sun DY, Mendelev MI, Becker CA, Kudin K, Haxhilali R, Asta M, et al. Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg. Phys Rev B. 2006;73:024116.CrossRefGoogle Scholar
  14. 14.
    Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opinion Solid State Mater Sci. 2008;12:63–72.CrossRefGoogle Scholar
  15. 15.
    Xiao W, Zhang X, Geng WT, Lu G. Atomistic study of plastic deformation in Mg-Al alloys. Mater Sci Eng A. 2013;586:245–52.CrossRefGoogle Scholar
  16. 16.
    Yi P, Cammarata RC, Falk ML. Atomistic simulation of solid solution hardening in Mg/Al alloys: examination of composition scaling and thermo-mechanical relationships. Acta Mater. 2016;105:378–89.CrossRefGoogle Scholar
  17. 17.
    Shen L, Proust G, Ranzi G. An atomistic study of dislocation-solute interaction in Mg-Al alloys. IOP Conf Series Mater Sci Eng. 2010;10:012177.CrossRefGoogle Scholar
  18. 18.
    Shen L. Molecular dynamics study of Al solute-dislocation interactions in Mg Alloys. Interaction Multiscale Mechanics. 2013;6:127–36.CrossRefGoogle Scholar
  19. 19.
    Kim K-H., Jeon JB., Kim NJ., Lee B-J. Role of yttrium in activation of &lt;c+a&gt; slip in magnesium: an atomistic approach. Scr Mater 2015; 108:104–8.Google Scholar
  20. 20.
    Nahhas MK, Groh S. Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys. J Phys Chem Solids. 2018;113:108–18.Google Scholar
  21. 21.
    Miyazawa N, Yoshida T, Yuasa M, Chino Y, Mabushi M. Effect of segregated Al on {10–12} and {10–11} twinning in Mg. J Mater Res. 2015;30:3629–41.CrossRefGoogle Scholar
  22. 22.
    Bhatia MA, Mathaudhu SN, Solanki K. Atomic-scale investigation of creep behavior in nanocrystalline Mg and Mg-Y alloys. Acta Mater. 2015;99:382–91.CrossRefGoogle Scholar
  23. 23.
    Reddy R, Groh S. Atomistic modeling of the effect of calcium on the yield surface of nanopolycrystalline magnesium-based alloys. Comput Mater Sci. 2016;112:219–29.CrossRefGoogle Scholar
  24. 24.
    Karewar S, Gupta N, Groh S, Martinez E, Caro A. Srinivasan S.G. Effect of Li on the deformation mechanisms of nanocrystalline hexagonal close packed magnesium. Comp Mater Sci. 2017;126:252–64.Google Scholar
  25. 25.
    Liu W-Y, Adams JB. Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures. Acta Mater. 1998;46:3467–76.CrossRefGoogle Scholar
  26. 26.
    Zhou XW, Johnson RA, Wadley HGN. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B. 2004;69:144113.CrossRefGoogle Scholar
  27. 27.
    Pei Z, Zhu LF, Friák M, Sandlöbes S, von Pezold J, Sheng HW, et al. Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg-Y alloys. New J Phys. 2013;15:043020.CrossRefGoogle Scholar
  28. 28.
    Kim Y-M, Jung I-H, Lee B-J. Atomistic modeling of pure Li and Mg-Li system. Model Simul Mater Sci Eng. 2012;20:035005.CrossRefGoogle Scholar
  29. 29.
    Kim K-H, Jeon JB, Lee B-J. Modified embedded-atom method interatomic potentials for Mg-X (X = Y, Sn, Ca) binary systems. CALPHAD Comp Coupl Phase Diagrams Thermo. 2015;48:27–34.Google Scholar
  30. 30.
    Groh S. Mechanical, thermal, and physical properties of Mg-Ca compounds in the framework of the modified embedded-atom method. J Mech Behav Biomed Mater. 2015;42:88–99.CrossRefGoogle Scholar
  31. 31.
    Moitra A, Kim S-G, Horstemeyer MF. Solute effect on basal and prismatic slip systems of Mg. J Phys Condens Matter. 2014;26:445004.CrossRefGoogle Scholar
  32. 32.
    Vitek V. Intrinsic stacking faults in body-centred cubic crystals. Philos Mag. 1968;18:773–86.CrossRefGoogle Scholar
  33. 33.
    Tsuru T, Udagawa Y, Yamaguchi M, Itakura M, Kaburaki H, Kaji Y. Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip. J Phys Condens Matter. 2013;24:02202.Google Scholar
  34. 34.
    Alam M, Groh S. Dislocation modeling in bcc lithium: a comparison between continuum and atomistic predictions in the modified embedded atoms method. J Phys Chem Solids. 2015;82:1–9.CrossRefGoogle Scholar
  35. 35.
    Rice J. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids. 1992;40:239–71.CrossRefGoogle Scholar
  36. 36.
    Groh S, Alam M. Fracture behavior of lithium single crystal in the framework of (semi-) empirical force field derived from first-principles. Model Simul Mater Sci Eng. 2015;23:045008.CrossRefGoogle Scholar
  37. 37.
    Yasi JA, Hector LG Jr, Trinkle DR. First-principles data for solid-solution strengthening of magnesium: from geometry and chemistry to properties. Acta Mater. 2010;58:5704–13.CrossRefGoogle Scholar
  38. 38.
    Muzyk M, Pakiela Z, Kurzydlowski KJ. Generalized stacking fault energy in magnesium alloys: density functional theory calculations. Scr Mater. 2012;66:219–22.CrossRefGoogle Scholar
  39. 39.
    Shang SL, Wang WY, Zhou BC, Wang Y, Darling KA, Kecskes LJ, et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: a first-principles study of shear deformation. Acta Mater. 2014;67:168–80.CrossRefGoogle Scholar
  40. 40.
    Zu G., Groh S. Effect of segregated alloying element on the intrinsic fracture behavior of Mg. Theo Appl Frac Mech. 2016;85:236–45.Google Scholar
  41. 41.
    Fleischer RL. Substitutional solution hardening. Acta Metall. 1963;11:203–9.CrossRefGoogle Scholar
  42. 42.
    Labusch R. A statistical theory of solid solution hardening. Phys Status Solidi. 1970;41:659–69.CrossRefGoogle Scholar
  43. 43.
    Leyson GPM, Curtin WA. Friedel vs Labusch: the strong/weak pinning transition in solute strengthened metals. Phil Mag. 2013;93:2428–44.CrossRefGoogle Scholar
  44. 44.
    Groh S, Marin EB, Horstemeyer MF, Bammann DJ. Dislocation motion in magnesium: a study by molecular statics and molecular dynamics. Model Simul Mater Sci Eng. 2009;17:075009.CrossRefGoogle Scholar
  45. 45.
    Yamagata T. Correlation between characters of dislocations and operative slip systems in CsCl type intermetallic compounds. J Phys Soc Japan. 1978;45:1575–82.CrossRefGoogle Scholar
  46. 46.
    Yamaguchi M, Umakoshi Y. The deformation behaviour of intermetallic superlattice compounds. Prog Mater Sci. 1990;34:1–148.CrossRefGoogle Scholar
  47. 47.
    Tang P-Y, Wen L, Tong Z-F, Tang B-Y, Peng L-M, Ding W-J. Stacking faults in B2-structured magnesium alloys from first principles calculations. Comput Mater Sci. 2011;50:3198–207.CrossRefGoogle Scholar
  48. 48.
    Lee E, Lee K-R, Baskes MI, Lee B-JA. Modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM+Qeq. Phys Rev B. 2016;94:144110.CrossRefGoogle Scholar
  49. 49.
    Kong F, Longo RC, Zhang H, Liang C, Zheng Y, Cho K. Charge-transfer modified embedded-atom method for manganese oxides: nanostructuring effects on MnO2 nanorods. Comput Mater Sci. 2016;121:191–203.CrossRefGoogle Scholar
  50. 50.
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.CrossRefMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of BaselAllschwilSwitzerland

Personalised recommendations