Skip to main content

Ionic Liquid Materials for the Adsorption of Toxic Gases

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 311 Accesses

Introduction

Generally, ionic liquids (ILs) are defined as those fused salts with a melting point less than 100 °C, with salts with higher melting points referred to as molten salts [16]. As far as we can ascertain, the first truly room-temperature IL discovered was ethylammonium nitrate ([EtNH3][NO3]) reported in 1914 by Walden [41], with a melting point of 12.5 °C [31]. Typical ILs are composed of a large organic cation and an inorganic polyatomic anion or an organic polyatomic anion, showing the high thermal stability, low vapor pressure, wide liquid temperature range, and adjustable physicochemical characteristics [12, 50]. The physicochemical properties of ILs can be easily tuned by changing the type and structure of anions and cations, and once a potential IL satisfying the property specifications is screened, the chemists are required to synthesize it for a given separation task such as the adsorption of toxic gases. Therefore, ILs can be regarded as “designer solvents” in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Anderson JL, Dixon JK, Maginn EJ (2006) Measurement of SO2 solubility in ionic liquids. J Phys Chem B 110:15059–15062

    Article  CAS  Google Scholar 

  2. Anderson JL, Dixon JK, Brennecke JF (2007) Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis (trifluoromethylsulfonyl) imide: comparison to other ionic liquids. Acc Chem Res 40:1208–1216

    Article  CAS  Google Scholar 

  3. Anthony JL, Maginn EJ, Brennecke JF (2002) Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106:7315–7320

    Article  CAS  Google Scholar 

  4. Bates ED, Mayton RD, Ntai I et al (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    Article  CAS  Google Scholar 

  5. Blanchard LA, Hancu D, Beckman EJ et al (1999) Green processing using ionic liquids and CO2. Nature 399:28

    Article  Google Scholar 

  6. Brennführer A, Neumann H, Beller M (2009) Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew Chem Int Ed 48:4114–4133

    Article  Google Scholar 

  7. Camper D, Scovazzo P, Koval C et al (2004) Gas solubilities in room-temperature ionic liquids. Ind Eng Chem Res 43:3049–3054

    Article  CAS  Google Scholar 

  8. Carlisle TK, Bara JE, Gabriel CJ et al (2008) Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Ind Eng Chem Res 47:7005–7012

    Article  CAS  Google Scholar 

  9. Chen Y, Zhou XQ, Cao Y et al (2013) Quantitative investigation on the physical and chemical interactions between CO2 and amine-functionalized ionic liquid [aEMMIM][BF4] by NMR. Chem Phys Lett 574:124–128

    Article  CAS  Google Scholar 

  10. Chen FF, Huang K, Zhou Y et al (2016) Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids. Angew Chem Int Ed 55:7166–7170

    Article  CAS  Google Scholar 

  11. Cui G, Zheng J, Luo X et al (2013) Tuning anion-functionalized ionic liquids for improved SO2 capture. Angew Chem Int Ed 52:10620–10624

    Article  CAS  Google Scholar 

  12. Cui G, Wang J, Zhang S (2016) Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem Soc Rev 45:4307–4339

    Article  CAS  Google Scholar 

  13. Deng D, Gao B, Zhang C et al (2019) Investigation of protic NH4SCN-based deep eutectic solvents as highly efficient and reversible NH3 absorbents. Chem Eng J 358:936–943

    Article  CAS  Google Scholar 

  14. Finotello A, Bara JE, Camper D et al (2008) Room-temperature ionic liquids: temperature dependence of gas solubility selectivity. Ind Eng Chem Res 47:3453–3459

    Article  CAS  Google Scholar 

  15. Ghobadi AF, Taghikhani V, Elliott JR (2011) Investigation on the solubility of SO2 and CO2 in imidazolium-based ionic liquids using NPT Monte Carlo simulation. J Phys Chem B 115:13599–13607

    Article  CAS  Google Scholar 

  16. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    Article  CAS  Google Scholar 

  17. Greer A, Taylor SFR, Daly H et al (2019) Investigating the effect of NO on the capture of CO2 using superbase ionic liquids for flue gas applications. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b05870

    Article  CAS  Google Scholar 

  18. Haruta M, Kobayashi T, Sano H (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  19. Hert DG, Anderson JL, Aki SN et al (2005) Enhancement of oxygen and methane solubility in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide using carbon dioxide. Chem Commun 20:2603–2605

    Google Scholar 

  20. Hu P, Rismani-Yazdi H, Stephanopoulos G (2013) Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica. AIChE J 59:3176–3183

    Article  CAS  Google Scholar 

  21. Huang Y, Cui G, Wang H et al (2018) Tuning ionic liquids with imide-based anions for highly efficient CO2 capture through enhanced cooperations. J CO2 Util 28:299–305

    Article  CAS  Google Scholar 

  22. Kumełan J, Kamps ÁPS, Tuma D et al (2005) Solubility of CO in the ionic liquid [bmim][PF6]. Fluid Phase Equilib 228:207–211

    Article  Google Scholar 

  23. Kumełan J, Kamps ÁPS, Tuma D (2007) Solubility of the single gases H2 and CO in the ionic liquid [bmim][CH 3SO4]. Fluid Phase Equilib 260:3–8

    Article  Google Scholar 

  24. Kumełan J, Kamps ÁPS, Tuma D et al (2007) Solubility of the single gases methane and xenon in the ionic liquid [hmim][Tf2N]. Ind Eng Chem Res 46:8236–8240

    Article  Google Scholar 

  25. Kumełan J, Kamps ÁPS, Tuma D et al (2007) Solubility of the single gases methane and xenon in the ionic liquid [bmim][CH3SO4]. J Chem Eng Data 52:2319–2324

    Article  Google Scholar 

  26. Lei Z, Dai C, Chen B (2013) Gas solubility in ionic liquids. Chem Rev 114:1289–1326

    Article  Google Scholar 

  27. Lei X, Xu Y, Zhu L et al (2014) Highly efficient and reversible CO2 capture through 1, 1, 3, 3-tetramethylguanidinium imidazole ionic liquid. RSC Adv 4:7052–7057

    Article  CAS  Google Scholar 

  28. Li X, Zhang L, Li L et al (2018) NO removal from flue gas using conventional imidazolium-based ionic liquids at high pressures. Energy Fuel 32:6039–6048

    Article  CAS  Google Scholar 

  29. Ohlin CA, Dyson PJ, Laurenczy G (2004) Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem Commun 9:1070–1071

    Article  Google Scholar 

  30. Perez-Salado Kamps A, Tuma D, Xia J et al (2003) Solubility of CO2 in the ionic liquid [bmim][PF6]. J Chem Eng Data 48:746–749

    Article  CAS  Google Scholar 

  31. Poole CF (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82

    Article  CAS  Google Scholar 

  32. Qian W, Xu Y, Xie B (2017) Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature. Int J Greenh Gas Con 56:194–201

    Article  CAS  Google Scholar 

  33. Schneider WF, Brennecke JF, Maginn EJ et al (2018) U.S. Patent No. 9,951,008. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  34. Shang Y, Li H, Zhang S et al (2011) Guanidinium-based ionic liquids for sulfur dioxide sorption. Chem Eng J 175:324–329

    CAS  Google Scholar 

  35. Shang D, Bai L, Zeng S et al (2018) Enhanced NH3 capture by imidazolium-based protic ionic liquids with different anions and cation substituents. J Chem Technol Biotechnol 93:1228–1236

    Article  CAS  Google Scholar 

  36. Sharma A, Julcour C, Kelkar AA et al (2009) Mass transfer and solubility of CO and H2 in ionic liquid. Case of [Bmim][PF6] with gas-inducing stirrer reactor. Ind Eng Chem Res 48:4075–4082

    Article  CAS  Google Scholar 

  37. Shi W, Maginn EJ (2009) Molecular simulation of ammonia absorption in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]). AIChE J 55:2414–2421

    Article  CAS  Google Scholar 

  38. Shokouhi M, Adibi M, Jalili AH (2009) Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. J Chem Eng Data 55:1663–1668

    Article  Google Scholar 

  39. Sutton MA, Erisman JW, Dentener F et al (2008) Ammonia in the environment: from ancient times to the present. Environ Pollut 156:583–604

    Article  CAS  Google Scholar 

  40. Tao DJ, Chen FF, Tian ZQ et al (2017) Highly efficient carbon monoxide capture by carbanion-functionalized ionic liquids through C-site interactions. Angew Chem Int Ed 129:6947–6951

    Article  Google Scholar 

  41. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imper Sci (St. Petersburg) 1800:405

    Google Scholar 

  42. Wang C, Cui G, Luo X et al (2011) Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption. J Am Chem Soc 133:11916–11919

    Article  CAS  Google Scholar 

  43. Wang C, Luo X, Luo H et al (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem Int Ed 123:5020–5024

    Article  Google Scholar 

  44. Wang J, Zeng S, Huo F et al (2019) Metal chloride anion-based ionic liquids for efficient separation of NH3. J Clean Prod 206:661–669

    Article  CAS  Google Scholar 

  45. Wu W, Han B, Gao H et al (2004) Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew Chem Int Ed 116:2469–2471

    Article  Google Scholar 

  46. Xu Y (2017) CO2 absorption behavior of azole-based protic ionic liquids: influence of the alkalinity and physicochemical properties. J CO2 Util 19:1–8

    Article  Google Scholar 

  47. Yang Z, Jiang D, Zhu X et al (2014) Coordination effect-regulated CO2 capture with an alkali metal onium salts/crown ether system. Green Chem 16:253–258

    Article  CAS  Google Scholar 

  48. Yokozeki A, Shiflett MB (2007) Ammonia solubilities in room-temperature ionic liquids. Ind Eng Chem Res 46:1605–1610

    Article  CAS  Google Scholar 

  49. Yokozeki A, Shiflett MB (2007) Vapor–liquid equilibria of ammonia+ionic liquid mixtures. Appl Energy 84:1258–1273

    Article  CAS  Google Scholar 

  50. Zeng S, Zhang X, Bai L et al (2017) Ionic-liquid-based CO2 capture systems: structure, interaction and process. Chem Rev 117:9625–9673

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Xu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, Y. (2019). Ionic Liquid Materials for the Adsorption of Toxic Gases. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_90-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_90-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics