Skip to main content

Ionic Liquid-Based Microextraction and Determination of Components in Food-Related Products

  • Living reference work entry
  • First Online:
  • 219 Accesses

Introduction

Ionic liquids (ILs) are non-molecular solvents, which result from combinations of organic cations and various anions. ILs have many unique properties, including variable viscosity, high conductivity, high thermal stability, almost negligible vapor pressure, and a multitude of varying solvation interactions [1, 2]. The use of ILs has been a hot research topic in analytical chemistry in recent years due to their outstanding properties.

Public concerns over food safety urge sensitive, rapid, and accurate detection of components and agricultural contaminants in food. Food is a complex mixture of a wide variety of chemicals. It is an analytical challenge to extract analytes of interest from food samples considering the multiplicity of food matrices and their complexity [3]. Using green approaches, there has been an increasing number of works employing ILs to extract food samples in recent years. Preconcentration method was usually used combined with these techniques to...

This is a preview of subscription content, log in via an institution.

References

  1. Martin-Calero A, Pino VN, Afonso AM (2011) Ionic liquids as a tool for determination of metals and organic compounds in food analysis. Trends Anal Chem 30(10):1598–1619

    CAS  Google Scholar 

  2. Rogers R, Seddon K (2003) Ionic liquids as green solvents: progress and prospects. Am Chem Soc Symp Ser 856:356–359

    Google Scholar 

  3. Martins PLG, Braga AR, Rosso VVD (2017) Can ionic liquid solvents be applied in the food industry? Trends Food Sci Technol 66:117–124

    Article  CAS  Google Scholar 

  4. Sha O, Zhu X, Feng Y et al (2015) Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography. Food Chem 174:380–386

    Article  CAS  Google Scholar 

  5. Faustino N, Pinto PCG, Passos MLC et al (2017) Automatic ionic liquid-enhanced membrane microextraction for the determination of melamine in food samples. Food Control 79:162–168

    Article  CAS  Google Scholar 

  6. Faraji M, Noorani M, Sahneh BN (2017) Quick, easy, cheap, effective, rugged, and safe method followed by ionic liquid-dispersive liquid-liquid microextraction for the determination of trace amount of Bisphenol A in canned foods. Food Anal Methods 10:764–772

    Article  Google Scholar 

  7. Xu X, Long N, Zhang M et al (2016) Determination of Rhodamine B in food using ionic liquid-coated multiwalled carbon nanotube-based ultrasound-assisted dispersive solid-phase microextraction followed by high-performance liquid chromatography. Food Anal Methods 9:1696–1705

    Article  Google Scholar 

  8. Wang L, Zhang D, Xu X et al (2016) Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging. Food Chem 197:754–760

    Article  CAS  Google Scholar 

  9. Zhang L, Wu H, Liu Z et al (2015) Ionic Liquid-Magnetic Nanoparticle Microextraction of Safranin T in Food Samples. Food Anal Methods 8:541–548

    Article  CAS  Google Scholar 

  10. Naeemullah KTG, Tuzen M (2015) Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry. Food Chem 172:161–165

    Article  CAS  Google Scholar 

  11. Zeeb M, Mirza B, Zare-Dorabei R et al (2014) Ionic liquid-based ultrasound-assisted in situ solvent formation microextraction combined with electrothermal atomic absorption spectrometry as a practical method for preconcentration and trace determination of vanadium in water and food samples. Food Anal Methods 7:1783–1790

    Article  Google Scholar 

  12. Khani R, Shemirani F (2013) Simultaneous determination of trace amounts of cobalt and nickel in water and food samples using a combination of partial least squares method and dispersive liquid-liquid microextraction based on ionic liquid. Food Anal Methods 6:386–394

    Article  Google Scholar 

  13. Zeeb M, Ganjali MR, Norouzi P (2013) Preconcentration and trace determination of chromium using modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction: application to different water and food samples. Food Anal Methods 6:1398–1406

    Article  Google Scholar 

  14. Jalbani N, Soylak M (2015) Ligandless ultrasonic-assisted and ionic liquid-based dispersive liquid-liquid microextraction of copper, nickel and lead in different food samples. Food Chem 167:433–437

    Article  CAS  Google Scholar 

  15. Jalbani N, Soylak M (2015) Separation-preconcentration of nickel and lead in food samples by a combination of solid-liquid-solid dispersive extraction using SiO2 nanoparticles, ionic liquid-based dispersive liquid-liquid micro-extraction. Talanta 131:361–365

    Article  CAS  Google Scholar 

  16. Wang X, Wu L, Cao J et al (2016) Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages. Food Addit Contam Part A 33(7):1190–1199

    Article  CAS  Google Scholar 

  17. Tuzen M, Pekiner OZ (2015) Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages. Food Chem 188:619–624

    Article  CAS  Google Scholar 

  18. Bagda E, Tuzen M (2017) A simple and sensitive vortex-assisted ionic liquid-dispersive microextraction and spectrophotometric determination of selenium in food samples. Food Chem 232:98–104

    Article  CAS  Google Scholar 

  19. Altunay N (2018) Development of vortex-assisted ionic liquid-dispersive microextraction methodology for vanillin monitoring in food products using ultravioletvisible spectrophotometry. LWT-Food Sci Technol 93:9–15

    Article  CAS  Google Scholar 

  20. Altunay N, Elik A, Gurkan R (2018) Extraction and reliable determination of acrylamide from thermally processed foods using ionic liquid-based ultrasound-assisted selective microextraction combined with spectrophotometry. Food Addit Contam, Part A 35(2):222–232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Li .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, J., Li, F. (2019). Ionic Liquid-Based Microextraction and Determination of Components in Food-Related Products. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics