Skip to main content

Transformation of CO2 into Value-Added Chemicals in Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 161 Accesses

Introduction

Strategies to mitigate greenhouse effects caused by the increasing levels of carbon dioxide in the atmosphere have seen much development in the past decade, specifically in research areas concerning carbon capture and storage (CCS) or utilization (CCU). The utilization of CO2 is often seen as more attractive over storage, especially if the products of the bulk conversion are of economic importance. However, CO2 is thermodynamically stable due to its highly oxidized nature, rendering it inactive for a number of transformations. In this entry, we will summarize recent developments of ionic liquid (IL)-promoted or IL-mediated transformations of CO2.

ILs are generally defined as salts that have a melting point of below 100 Â°C, consisting of discrete cations and anions. ILs based on ammonium, pyridinium, and phosphonium salts have been reported, but imidazolium salt ILs have emerged to be a prominent class of ILs on its own. This is due to its ease of synthesis, allowing for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wang S, Wang X (2015) Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew Chem Int Ed 55:2308–2320. https://doi.org/10.1002/anie.201507145

    Article  CAS  Google Scholar 

  2. Bates E, Mayton R, Ntai I, Davis J (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927. https://doi.org/10.1021/ja017593d

    Article  CAS  PubMed  Google Scholar 

  3. Rosen B, Salehi-Khojin A, Thorson M et al (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644. https://doi.org/10.1126/science.1209786

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez-Guerra M, Albo J, Alvarez-Guerra E, Irabien A (2015) Ionic liquids in the electrochemical valorisation of CO2. Energy Environ Sci 8:2574–2599. https://doi.org/10.1039/c5ee01486g

    Article  CAS  Google Scholar 

  5. Lin J, Ding Z, Hou Y, Wang X (2013) Ionic liquid co-catalyzed artificial photosynthesis of CO2. Sci Rep. https://doi.org/10.1038/srep01056

  6. Tominaga K, Sasaki Y, Hagihara K et al (1994) Reverse water-gas shift reaction catalyzed by ruthenium cluster anions. Chem Lett 23:1391–1394. https://doi.org/10.1246/cl.1994.1391

    Article  Google Scholar 

  7. Zhang Z, Hu S, Song J et al (2009) Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid. ChemSusChem 2:234–238. https://doi.org/10.1002/cssc.200800252

    Article  CAS  PubMed  Google Scholar 

  8. Yasaka Y, Wakai C, Matubayasi N, Nakahara M (2010) Controlling the equilibrium of formic acid with hydrogen and carbon dioxide using ionic liquid. Chem A Eur J 114:3510–3515. https://doi.org/10.1021/jp908174s

    Article  CAS  Google Scholar 

  9. Wesselbaum S, Hintermair U, Leitner W (2012) Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew Chem Int Ed 51:8585–8588. https://doi.org/10.1002/anie.201203185

    Article  CAS  Google Scholar 

  10. Watkins J, Bocarsly A (2013) Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes. ChemSusChem 7:284–290. https://doi.org/10.1002/cssc.201300659

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Q, Ma J, Kang X et al (2016) Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew Chem Int Ed 55:9012–9016. https://doi.org/10.1002/anie.201601974

    Article  CAS  Google Scholar 

  12. Bobbink F, Dyson P (2016) Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: state-of-the-art and beyond. J Catal 343:52–61. https://doi.org/10.1016/j.jcat.2016.02.033

    Article  CAS  Google Scholar 

  13. Zhang S, Sun J, Zhang X et al (2014) Ionic liquid-based green processes for energy production. Chem Soc Rev 43:7838–7869. https://doi.org/10.1039/c3cs60409h

    Article  CAS  PubMed  Google Scholar 

  14. Lim Y, Lee C, Jang H (2014) Metal-free synthesis of cyclic and acyclic carbonates from CO2 and alcohols. Eur J Org Chem 2014:1823–1826. https://doi.org/10.1002/ejoc.201400031

    Article  CAS  Google Scholar 

  15. Shi F, Deng Y, SiMa T et al (2003) Alternatives to phosgene and carbon monoxide: synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. Angew Chem Int Ed 42:3257–3260. https://doi.org/10.1002/anie.200351098

    Article  CAS  Google Scholar 

  16. Lu W, Ma J, Hu J et al (2014) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 using ionic liquids as a dual solvent–catalyst at atmospheric pressure. Green Chem 16:221–225. https://doi.org/10.1039/c3gc41467a

    Article  CAS  Google Scholar 

  17. Song D, Li D, Xiao X et al (2018) Synthesis of β-oxopropylcarbamates in a recyclable AgBr/ionic liquid catalytic system: an efficient assembly of CO2 under ambient pressure. J CO2 Util 27:217–222. https://doi.org/10.1016/j.jcou.2018.07.021

    Article  CAS  Google Scholar 

  18. Hu J, Ma J, Zhu Q, Zhang Z, Wu C, Han B (2015) Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones. Angew Chem Int Ed 54:5399–5403. https://doi.org/10.1002/anie.201411969

    Article  CAS  Google Scholar 

  19. Tominaga K (2006) An environmentally friendly hydroformylation using carbon dioxide as a reactant catalyzed by immobilized Ru-complex in ionic liquids. Catal Today 115:70–72. https://doi.org/10.1016/j.cattod.2006.02.019

    Article  CAS  Google Scholar 

  20. Wu L, Liu Q, Fleischer I et al (2014) Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nat Commun. https://doi.org/10.1038/ncomms4091

  21. Comin E, de Souza R, Bernardo-Gusmão K (2017) Effect of imidazolium ionic liquids anions on copolymerization of CO2 with cyclohexene oxide by Cr III (Salen)Cl. Catal Today 289:115–120. https://doi.org/10.1016/j.cattod.2016.11.044

    Article  CAS  Google Scholar 

  22. Xu X, Wang C, Li H et al (2007) Effects of imidazolium salts as cocatalysts on the copolymerization of CO2 with epoxides catalyzed by (salen)CrIIICl complex. Polymer 48:3921–3924. https://doi.org/10.1016/j.polymer.2007.05.008

    Article  CAS  Google Scholar 

  23. Huang Z, Wang Y, Zhang N et al (2018) One-pot synthesis of ion-containing CO2-based polycarbonates using protic ionic liquids as chain transfer agents. Macromolecules 51:9122–9130. https://doi.org/10.1021/acs.macromol.8b01834

    Article  CAS  Google Scholar 

  24. Chu D, Qin G, Yuan X et al (2008) Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid–H2O solution. ChemSusChem 1:205–209. https://doi.org/10.1002/cssc.200700052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugen Zhang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Riduan, S.N., Zhang, Y. (2019). Transformation of CO2 into Value-Added Chemicals in Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics