Skip to main content

Depolymerization of Lignin by Catalytic Oxidation in Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids

Introduction

Ionic liquids (ILs) have been widely studied, with the generation of very many different types [1,2,3,4]. ILs can be synthesized from an enormous number of cation and anion options and more commonly contain an organic fragment as the cation with an inorganic component as the cation, though not exclusively. Carlin and Wilkes [5] firstly reported room temperature ILs (RTILs) based on 1-alkyl-3-methylimidazolium salts known as tetrachloroaluminates in 1982, which was considered as the first generation of ILs. However, the tetrachloroaluminate anion was sensitive to moisture. The second generation of ILs was generated by replacing the tetrachloroaluminates with the tetrafluoroborate anion, which was air- and moisture-stable. The wide choice of cations and anions has led to the development of ILs with properties designed for specific tasks and solvent properties. This has sometimes been referred to as ionic liquids having “tunable properties” or “task-specific ILs” (TSILs)....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. MacFarlane DR, Kar M, Pringle JM (2017) Fundamentals of ionic liquids: from chemistry to applications. John Wiley & Son, Australia

    Google Scholar 

  2. Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    Article  CAS  PubMed  Google Scholar 

  3. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  PubMed  Google Scholar 

  4. Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60

    Article  CAS  Google Scholar 

  5. Carlin RT, Wilkes JS (1994) Chemistry and speciation in room-temperature chloroaluminate molten salts. In: Mamantov G, Popov AI (eds) Chemistry of nonaqueous solutions. VCH, New York, p 277

    Google Scholar 

  6. Gerhard D, Alpaslan SC, Gores HJ, Uerdingen M, Wasserscheid P (2005) Trialkylsulfonium dicyanamides-anew family of ionic lqiudis with very low viscosities. Chem Commun 40:5080–5082

    Article  CAS  Google Scholar 

  7. Jin L, Qi Y, Chaffee AL (2018) Effect of temperature on the solubility of Victorian brown coal in the ionic liquid DIMCARB. Fuel 216:752–759

    Article  CAS  Google Scholar 

  8. Song CP, Yap QY, Chong MYA, Ramakrishnan Nagasundara R, Vijayaraghavan R, MacFarlane DR, Chan ES, Ooi CW (2018) Environmentally benign and recyclable aqueous two-phase system composed of distillable CO2-based alkyl carbamate ionic liquids. ACS Sustain Chem Eng 6:10344–10354

    Article  CAS  Google Scholar 

  9. Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    Article  CAS  Google Scholar 

  10. Dai J, Patti AF, Saito K (2016) Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett 57:4945–4951

    Article  CAS  Google Scholar 

  11. Wang H, Tucker M, Ji Y (2013) Recent development in chemical depolymerization of lignin: a review. J Appl Chem. Article ID 838645

    Google Scholar 

  12. Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11

    Article  Google Scholar 

  13. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9:1163

    Article  CAS  Google Scholar 

  14. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3557

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Z, Lei F, Li P, Jiang J (2018) Lignocellulosic biomass to biofuels and biochemicals: a comprehensive review with a focus on ethanol organosolv pretreatment technology. Biotechnol Bioeng 115: 2683–2702

    Article  CAS  PubMed  Google Scholar 

  16. Upton BM, Kasko AM (2015) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306

    Article  PubMed  CAS  Google Scholar 

  17. Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43:7485–7500

    Article  CAS  PubMed  Google Scholar 

  18. Ma R, Guo M, Zhang X (2018) Recent advances in oxidative valorization of lignin. Catal Today 302: 50–60

    Article  CAS  Google Scholar 

  19. Chatel G, Rogers RD (2013) Oxidation of lignin using ionic liquids-an innovative strategy to produce renewable chemicals. ACS Sustain Chem Eng 2:322–339

    Article  CAS  Google Scholar 

  20. Espinoza-Acosta JL, Torres-Chávez PI, Carvajal-Millán E, Ramírez-Wong B, Bello-Pérez LA, Montaño-Leyva B (2014) Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. Bioresources 9:3660–3687

    Article  Google Scholar 

  21. Tan SS, MacFarlane DR, Upfal J, Edye LA, Doherty WO, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339–345

    Article  CAS  Google Scholar 

  22. Zhao H, Xia S, Ma P (2005) Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol 80:1089–1096

    Article  CAS  Google Scholar 

  23. Rashid T, Kait CF, Regupathi I, Murugesan T (2016) Dissolution of Kraft lignin using protic ionic liquids and characterization. Ind Crop Prod 84:284–293

    Article  CAS  Google Scholar 

  24. Zhang ZC (2013) Catalytic transformation of carbohydrates and lignin in ionic liquids. Wiley Interdiscip Rev Energy Environ 2:655–672

    Article  CAS  Google Scholar 

  25. Yan P, Xu Z, Zhang C, Liu X, Xu W, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920

    Article  CAS  Google Scholar 

  26. Soutullo MD, Odom CI, Wicker BF, Henderson CN, Stenson AC, Davis JH (2007) Reversible CO2 capture by unexpected plastic-, resin-, and gel-like ionic soft materials discovered during the combi-click generation of a TSIL library. Chem Mater 19:3581–3583

    Article  CAS  Google Scholar 

  27. Prado R, Erdocia X, Labidi J (2013) Lignin extraction and purification with ionic liquids. J Chem Technol Biotechnol 88:1248–1257

    Article  CAS  Google Scholar 

  28. Cox BJ, Ekerdt JG (2013) Pretreatment of yellow pine in an acidic ionic liquid: extraction of hemicellulose and lignin to facilitate enzymatic digestion. Bioresour Technol 134:59–65

    Article  CAS  PubMed  Google Scholar 

  29. Miyafuji H, Miyata K, Saka S, Ueda F, Mori M (2009) Reaction behavior of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 55: 215–219

    Article  CAS  Google Scholar 

  30. Mohtar SS, Busu TTM, Noor AM, Shaari N, Yusoff NA, Bustam MA, Mutalib MA, Mat HB (2015) Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Bioresour Technol 192:212–218

    Article  CAS  PubMed  Google Scholar 

  31. Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119

    Article  CAS  Google Scholar 

  32. Sathitsuksanoh N, Holtman KM, Yelle DJ, Morgan T, Stavila V, Pelton J, Blanch H, Simmons BA, George A (2014) Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chem 16: 1236–1247

    Article  CAS  Google Scholar 

  33. Prado R, Erdocia X, Labidi J (2016) Study of the influence of reutilization ionic liquid on lignin extraction. J Clean Prod 111:125–132

    Article  CAS  Google Scholar 

  34. Wen J-L, Yuan T-Q, Sun S-L, Xu F, Sun R-C (2014) Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chem 16:181–190

    Article  CAS  Google Scholar 

  35. Prado R, Brandt A, Erdocia X, Hallet J, Welton T, Labidi J (2016) Lignin oxidation and depolymerisation in ionic liquids. Green Chem 18:834–841

    Article  CAS  Google Scholar 

  36. Dai J, Styles GN, Patti AF, Saito K (2018) CuSO4/H2O2-catalyzed lignin depolymerization under the irradiation of microwaves. ACS Omega 3: 10433–10441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 8:24–51

    Article  CAS  PubMed  Google Scholar 

  38. Rogers RD, Seddon KR (2003) Ionic liquids: solvents of the future? Science 302:792–793

    Article  PubMed  Google Scholar 

  39. Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33:1122–1130

    Article  CAS  Google Scholar 

  40. Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind Eng Chem Res 50:849–855

    Article  CAS  Google Scholar 

  41. Pan J, Fu J, Deng S, Lu X (2014) Microwave-assisted degradation of lignin model compounds in imidazolium-based ionic liquids. Energy Fuel 28: 1380–1386

    Article  CAS  Google Scholar 

  42. Stärk K, Taccardi N, Bösmann A, Wasserscheid P (2010) Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3:719–723

    Article  PubMed  CAS  Google Scholar 

  43. Reichert E, Wintringer R, Volmer DA, Hempelmann R (2012) Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid. Phys Chem Chem Phys 14:5214–5221

    Article  CAS  PubMed  Google Scholar 

  44. Xue L, Yan L, Cui Y, Jiang M, Xu X, Zhang S, Gou J, Zhou Z (2016) Degradation of lignin in ionic liquid with HCl as catalyst. Environ Prog Sustain Energy 35:809–814

    Article  CAS  Google Scholar 

  45. Nanayakkara S, Patti AF, Saito K (2014) Lignin depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sustain Chem Eng 2:2159–2164

    Article  CAS  Google Scholar 

  46. Dai J, Nanayakkara S, Lamb TC, Clark AJ, Guo SX, Zhang J, Patti AF, Saito K (2016) Effect of the N-based ligands in copper complexes for depolymerisation of lignin. N J Chem 40:3511–3519

    Article  CAS  Google Scholar 

  47. De Gregorio GF, Prado R, Vriamont C, Erdocia X, Labidi J, Hallet JP, Welton T (2016) Oxidative depolymerization of lignin using a novel polyoxometalate protic ionic liquid system. ACS Sustain Chem Eng 11:6031–6036

    Article  CAS  Google Scholar 

  48. Cox BJ, Jia S, Zhang ZC, Ekerdt JG (2011) Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: Hammett acidity and anion effects. Polym Degrad Stab 96:426–431

    Article  CAS  Google Scholar 

  49. Yang Y, Fan H, Song J, Meng Q, Zhou H, Wu L, Yang G, Han B (2015) Free radical reaction promoted by ionic liquid: a route for metal-free oxidation depolymerization of lignin model compound and lignin. Chem Commun 51:4028–4031

    Article  CAS  Google Scholar 

  50. Diop A, Jradi K, Daneault C, Montplaisir D (2015) Kraft lignin depolymerization in an ionic liquid without a catalyst. Bioresources 10:4933–4946

    Article  CAS  Google Scholar 

  51. Dai J, Patti AF, Longé L, Garnier G, Saito K (2017) Oxidized lignin depolymerization using formate ionic liquid as catalyst and solvent. ChemCatChem 9:2684–2690

    Article  CAS  Google Scholar 

  52. Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515:249–252

    Article  CAS  PubMed  Google Scholar 

  53. Bicak N (2005) A new ionic liquid: 2-hydroxy ethylammonium formate. J Mol Liq 116:15–18

    Article  CAS  Google Scholar 

  54. An Y-X, Li N, Wu H, Lou W-Y, Zong M-H (2015) Changes in the structure and the thermal properties of Kraft lignin during its dissolution in cholinium ionic liquids. ACS Sustain Chem Eng 3:2951–2958

    Article  CAS  Google Scholar 

  55. Luska K, Migowski P, Leitner W (2015) Ionic liquid-stabilized nanoparticles as catalysts for the conversion of biomass. Green Chem 17:3195–3206

    Article  CAS  Google Scholar 

  56. Zhu Y, Chuanzhao L, Sudarmadji M, Hui Min N, Biying AO, Maguire JA, Hosmane NS (2012) An efficient and recyclable catalytic system comprising nanopalladium (0) and a pyridinium salt of iron bis (dicarbollide) for oxidation of substituted benzyl alcohol and lignin. ChemOpen 1:67–70

    CAS  Google Scholar 

  57. Belieres J, Angell CA (2007) Protic ionic liquids: preparation, characterisation, and proton free energy level representation. J Phys Chem B 111:4926–4937

    Article  CAS  PubMed  Google Scholar 

  58. Thomazeau C, Olivier-Bourbigou H, Magna L, Luts S, Gilbert B (2003) Determination of an acidic scale of room temperature ionic liquids. J Am Chem Soc 125:5264–5265

    Article  CAS  PubMed  Google Scholar 

  59. Dai J, Patti AF, Styles GN, Nanayakkara S, Spiccia L, Arena F, Italiano C, Saito K (2019) Lignin oxidation by MnO2 under the irradiation of blue light. Green Chem 21:2005–2014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio F. Patti or Kei Saito .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dai, J., Patti, A.F., Saito, K. (2020). Depolymerization of Lignin by Catalytic Oxidation in Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_78-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_78-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics