Skip to main content

Dynamics of Ionic Liquids Confined in Carbon-Based Nanomaterial Towards Energy Storage and Conversion Application

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 103 Accesses

Introduction

Room temperature ionic liquids (ILs) refer to a class of salts with low melting points lower than 100 Â°C, entirely consisting of organic cations and inorganic (or organic) anions [1, 2]. In recent years, ILs have attracted a great deal of scientific attention due to its exceptional properties such as wide electrochemical as well as thermal windows, negligible volatility, non-flammability, and high ionic conductivity [3, 4]. Above mentioned advantages make ILs extremely promising for a wide range of engineering and electrochemical applications, including cellulose and nuclear fuel reprocessing, solar thermal energy harvest, waste recycling, CO2 capture, lubrication, catalysis, and electro-wetting [5, 6]. Especially, the distinguished properties of non-flammability, high ionic conductivity, electrochemical and thermal stability make them ideal electrolytes for energy conversion and storage devices including solar cells, fuel cells, supercapacitors, and lithium-ion...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426

    Article  CAS  PubMed  Google Scholar 

  2. Dong K, Liu X, Dong H, Zhang X, Zhang S (2017) Multiscale studies on ionic liquids. Chem Rev 117:6636–6695

    Article  CAS  PubMed  Google Scholar 

  3. Armand M, Endres F, Macfarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  PubMed  Google Scholar 

  4. Fedorov MV, Kornyshev AA (2014) Ionic liquids at electrified interfaces. Chem Rev 114:2978–3036

    Article  CAS  PubMed  Google Scholar 

  5. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239

    Article  CAS  PubMed  Google Scholar 

  6. Hua L, Rutland MW, Atkin R (2013) Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. Chem Commun 15:14616–14623

    Google Scholar 

  7. Wishart JF (2009) Energy applications of ionic liquids. Energy Environ Sci 2:956–961

    Article  CAS  Google Scholar 

  8. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH Jr, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232

    Article  CAS  Google Scholar 

  9. Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 115:5159–5223

    Article  CAS  PubMed  Google Scholar 

  10. Guan Y, Shao Q, Chen W, Zhang J, Zhang X, Deng Y (2018) Flow-induced voltage generation by driving imidazolium-based ionic liquids over a graphene nano-channel. J Mater Chem A 6:11941–11950

    Article  CAS  Google Scholar 

  11. Simoncelli M, Ganfoud N, Sene A, Haefele M, Daffos B, Taberna PL, Salanne M, Simon P, Rotenberg B (2018) Blue energy and desalination with nanoporous carbon electrodes: capacitance from molecular simulations to continuous models. Phys Rev X 8:021024

    CAS  Google Scholar 

  12. Merlet C, Rotenberg B, Madden PA, Taberna PL, Simon P, Gogotsi Y, Salanne M (2012) On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 11:306

    Article  CAS  PubMed  Google Scholar 

  13. Augustyn V, Gogotsi Y (2017) 2D materials with nanoconfined fluids for electrochemical energy storage. Joule 1:443–452

    Article  CAS  Google Scholar 

  14. Lhermerout R, Perkin S (2018) Nanoconfined ionic liquids: disentangling electrostatic and viscous forces. Phys Rev Fluids 3:014201

    Article  Google Scholar 

  15. Mossa S (2018) Re-entrant phase transitions and dynamics of a nanoconfined ionic liquid. Phys Rev X 8:031062

    CAS  Google Scholar 

  16. Zhang S, Zhang J, Zhang Y, Deng Y (2017) Nanoconfined ionic liquids. Chem Rev 117:6755–6833

    Article  CAS  PubMed  Google Scholar 

  17. Perkin S (2012) Ionic liquids in confined geometries. Phys Chem Chem Phys 14:5052–5062

    Article  CAS  PubMed  Google Scholar 

  18. Lei Z, Chen B, Koo YM, MacFarlane DR (2017) Introduction: ionic liquids. Chem Rev 117:6633–6635

    Article  CAS  PubMed  Google Scholar 

  19. Dai S, Ju YH, Gao HJ, Lin JS, Pennycook SJ, Barnes CE (2000) Preparation of silica aerogel using ionic liquids as solvents. Chem Commun 3:243–244

    Article  Google Scholar 

  20. Han KS, Wang XQ, Dai S, Hagaman EW (2013) Distribution of 1-butyl-3-methylimidazolium Bistrifluoromethylsulfonimide in mesoporous silica as a function of pore filling. J Phys Chem C 117:15754–15762

    Article  CAS  Google Scholar 

  21. Ohba T, Chaban VV (2014) A highly viscous imidazolium ionic liquid inside carbon nanotubes. J Phys Chem B 118:6234–6240

    Article  CAS  PubMed  Google Scholar 

  22. Singh R, Monk J, Hung FR (2010) A computational study of the behavior of the ionic liquid [BMIM+][PF6-] confined inside multiwalled carbon nanotubes. J Phys Chem C 114:15478–15485

    Article  CAS  Google Scholar 

  23. Akbarzadeh H, Abbaspour M, Salemi S, Abdollahzadeh S (2015) Investigation of the melting of ionic liquid [emim][PF6] confined inside carbon nanotubes using molecular dynamics simulations. RSC Adv 5:3868–3874

    Article  CAS  Google Scholar 

  24. Dou Q, Sha M, Fu H, Wu G (2011) Melting transition of ionic liquid [bmim][PF6] crystal confined in nanopores: a molecular dynamics simulation. J Phys Chem C 115:18946–18951

    Article  CAS  Google Scholar 

  25. Foroutana M, Fatemi SM, Esmaeilian F (2017) A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur Phys J E 40:19

    Article  CAS  Google Scholar 

  26. Rajput NN, Monk J, Hung FR (2012) Structure and dynamics of an ionic liquid confined inside a charged slit graphitic nanopore. J Phys Chem C 116:14504–14513

    Article  CAS  Google Scholar 

  27. Rajput NN, Monk J, Hung FR (2014) Ionic liquids confined in a realistic activated carbon model: a molecular simulation study. J Phys Chem C 118:1540–1553

    Article  CAS  Google Scholar 

  28. Pean C, Daffos B, Rotenberg B, Levitz P, Haefele M, Taberna PL, Simon P, Salanne M (2015) Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J Am Chem Soc 137:12627–12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh R, Monk J, Hung FR (2011) Heterogeneity in the dynamics of the ionic liquid [BMIM+][PF6-] confined in a slit nanopore. J Phys Chem C 115:16544–16554

    Article  CAS  Google Scholar 

  30. Sha M, Wu G, Fang H, Zhu G, Liu Y (2008) Liquid-to-solid phase transition of a 1,3-Dimethylimidazolium chloride ionic liquid monolayer confined between graphite walls. J Phys Chem C 112:18584–18587

    Article  CAS  Google Scholar 

  31. Banuelos JL, Feng G, Fulvio PF, Li S, Rother G, Arend N, Faraone A, Dai S, Cummings PT, Wesolowski DJ (2014) The influence of a hierarchical porous carbon network on the coherent dynamics of a nanoconfined room temperature ionic liquid: a neutron spin echo and atomistic simulation investigation. Carbon 78:415–427

    Article  CAS  Google Scholar 

  32. Chathoth SM, Mamontov E, Dai S, Wang X, Fulvio PF, Wesolowski DJ (2012) Fast diffusion in a room temperature ionic liquid confined in mesoporous carbon. EPL 97:66004

    Article  CAS  Google Scholar 

  33. Monk J, Singh R, Hung FR (2011) Effects of pore size and pore loading on the properties of ionic liquids confined inside nanoporous cmk-3 carbon materials. J Phys Chem C 115:3034–3042

    Article  CAS  Google Scholar 

  34. He XX, Monk J, Singh R, Hung FR (2016) Molecular modelling of ionic liquids in the ordered mesoporous carbon CMK-5. Mol Simul 42:753–763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51876059), the National Science Fund for Distinguished Young Scholars of China (No. 51525602), and the Fundamental Research Funds for the Central Universities (No. 2018MS059).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, TH., Wang, XD. (2021). Dynamics of Ionic Liquids Confined in Carbon-Based Nanomaterial Towards Energy Storage and Conversion Application. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_64-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics