Skip to main content

Abiotic Degradation of Ionic Liquids (ILs)

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids

Introduction

Since the 1990s the research on ionic liquids (ILs) and the evaluation of their peculiar properties has been extensively investigated, with a consequent deeper knowledge on their unique nature. However, the study of the infinite possible combinations of cations and anions is currently demonstrating a diverse suite of behaviors that are described differently from the original concepts (e.g., from “nonvolatile, non-flammable, and air/water stable” to “distinctly volatile, flammable, and potentially unstable”) [1]. For many years, ILs were thought as “inert solvents,” thus non-participative into those chemical processes in which they serve as solvents or materials, and highly thermally stable. However, imidazolium-based ILs have different positions on the ring (e.g., C2 position) on which reactions can occur and that can be involved in many transformations [1]; moreover, some anions can decompose under conditions used for their preparation/use, to give detrimental...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wang B, Qin L, Mu T, Xue Z, Gao G Are Ionic Liquids Chemically Stable? (2017) Chem Rev 117:7113–7131

    Google Scholar 

  2. Swatloski RP, Holbrey JD, Rogers RD Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate (2003) Green Chem 5:361–363

    Google Scholar 

  3. Maton C, De Vos N, Stevens CV Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools (2013) Chem Soc Rev 42:5963–5977

    Article  CAS  Google Scholar 

  4. Rabideau BD, West KN, Davis JH Jr Making good on a promise: ionic liquids with genuinely high degrees of thermal stability (2018) Chem Commun 54:5019–5031

    Article  CAS  Google Scholar 

  5. Siedlecka EM, Czerwicka M, Stolte S, Stepnowski P Stability of Ionic Liquids in Application Conditions (2011) Curr Org Chem 15:1974–1991

    Google Scholar 

  6. Bubalo MC, Radošević K, Redovniković IR, Halambek J, Srčekt VG A brief overview of the potential environmental hazards of ionic liquids (2014) Ecotoxicol Environ Safe 99:1–12

    Google Scholar 

  7. Calza P, Vione D, Fabbri D, Aigotti R, Medana C Imidazolium-Based Ionic Liquids in Water: Assessment of Photocatalytic and Photochemical Transformation (2015) Environ Sci Technol 49:10951–10958

    Article  CAS  Google Scholar 

  8. Steudte S, Neumann J, Bottin-Weber U, Diedenhofen M, Arning J Hydrolysis study of fluoroorganic and cyano-based ionic liquid anions – consequences for operational safety and environmental stability (2012) Green Chem 14:2474–2483

    Article  CAS  Google Scholar 

  9. Freire MG, Neves CMSS, Marrucho IM, Coutinho JAP, Fernandes AM Hydrolysis of Tetrafluoroborate and Hexafluorophosphate Counter Ions in Imidazolium-Based Ionic Liquids (2010) J Phys Chem 114:3744–3749

    Article  CAS  Google Scholar 

  10. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation (2001) Green Chem 3:156–164

    Article  CAS  Google Scholar 

  11. Nikitenko SI, Berthon C, Moisy P Instability of actinide(IV) hexachloro complexes in room-temperature ionic liquid [BuMeIm]PF6 due to hydrolysis of the hexafluorophosphate anion (2007) CR Chimie 10:1122–1127

    Google Scholar 

  12. Yao C, Pitner WR, Anderson JL Ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate anion: a new class of highly selective and ultra hydrophobic solvents for the extraction of polycyclic aromatic hydrocarbons using single drop microextraction (2009) Anal Chem 81:5054–5063

    Article  CAS  Google Scholar 

  13. Baker GA, Baker SN A Simple Colorimetric Assay of Ionic Liquid Hydrolytic Stability (2005) Aust J Chem 58(3):174–177

    Google Scholar 

  14. Pati SG, Arnold WA Reaction rates and product formation during advanced oxidation of ionic liquid cations by UV/peroxide, UV/persulfate, and UV/chlorine (2017) Environ Sci Technol 51:11780–11787

    Google Scholar 

  15. Chu C, Lundeen RA, Remucal CK, Sander M, McNeill K Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter (2015) Environ Sci Technol 49:5511–5519

    Article  CAS  Google Scholar 

  16. Stepnowski A, Zaleska P Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids (2005) J Photochem Photobiol A 170:45–50

    Article  CAS  Google Scholar 

  17. Calza P, Noè G, Fabbri D, Santoro V, Minero C, Vione D, Medana C Photoinduced transformation of pyridinium-based ionic liquids, and implications for their photochemical behavior in surface waters (2017) Water Res 122:194–206

    Article  CAS  Google Scholar 

  18. Siedlecka EM, Czerwicka M, Neumann J, Stepnowski P (2011) Ionic liquids: methods of degradation and recovery. In: Ionic liquids: theory, properties, new approaches. IntechOpen, p 28, Rijeka, Croatia

    Google Scholar 

  19. Pernak J, Branicka M Synthesis and Aqueous Ozonation of Some Pyridinium Salts with Alkoxymethyl and Alkylthiomethyl Hydrophobic Groups (2004) Ind Eng Chem Res 43:1966–1974

    Article  CAS  Google Scholar 

  20. Siedlecka EM, Mrozik W, Kaczynski Z, Stepnowski P Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid in a Fenton-like system (2008) J Hazard Mater 154:893–900

    Google Scholar 

  21. Munoz M, Domínguez CM, de Pedro ZM, Quintanilla A, Casas JA, Rodriguez JJ Ionic liquids breakdown by Fenton oxidation (2015) Catal Today 240:16–21

    Article  CAS  Google Scholar 

  22. Stepnowski P, Siedlecka EM The effect of alkyl chain length on the degradation of alkylimidazolium- and pyridinium-type ionic liquids in a Fenton-like system (2009) Environ Sci Pollut Res 16:453–458

    Google Scholar 

  23. Siedlecka EM, Gołębiowski M, Kaczyński Z, Czupryniak J, Ossowski T, Stepnowski P Degradation of ionic liquids by Fenton reaction; the effect of anions as counter and background ions (2009) Appl Catal B 91:573–579

    Article  CAS  Google Scholar 

  24. Bocos E, Pazos M, Sanroman MA Electro-Fenton treatment of imidazolium-based ionic liquids: kinetics and degradation pathways (2016) RSC Adv 6:1958–1966

    Article  CAS  Google Scholar 

  25. Babuponnusami A, Muthukumar K A review on Fenton and improvements to the Fenton process for wastewater treatment (2014) J Environ Chem Eng 2:557–572

    Article  CAS  Google Scholar 

  26. Li X, Zhao J, Li Q, Wang L, Tsang SC Ultrasonic chemical oxidative degradation of 1,3-dialkylimidazolium ionic liquids and their mechanistic elucidation (2007) Dalton Trans 0:1875–1880 

    Google Scholar 

  27. Calza P, Fabbri D, Noè G, Santoro V, Medana C Assessment of the photocatalytic transformation of pyridinium-based ionic liquids in water (2018) J Hazard Mater 341:55–65

    Article  Google Scholar 

  28. Huang L, Yu Y, Fu C, Guo H, Li X Photocatalytic degradation of imidazolium ionic liquids using dye sensitized TiO2/SiO2 composites (2017) RSC Adv 7:32120–32125

    Google Scholar 

  29. Stolte S, Abdulkarim S, Arning J, Blomeyer-Nienstedt AK, Bottin-Weber U, Matzke M, Ranke J, Jastorff B, Thöming J Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds (2008) Green Chem 10:214–224

    Article  CAS  Google Scholar 

  30. Fabiańska A, Ossowski T, Stepnowski P, Stolte S, Thoming J, Siedlecka EM Electrochemical oxidation of imidazolium-based ionic liquids: The influence of anions (2012) Chem Eng J 198–199:338–345

    Google Scholar 

  31. Siedlecka EM, Stolte S, Gołębiowski M, Nienstedt A, Stepnowski P, Thöming J Advanced oxidation process for the removal of ionic liquids from water: The influence of functionalized side chains on the electrochemical degradability of imidazolium cations (2012) Sep Purif Technol 101:26–33

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Samorì .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Samorì, C., Pirini, D. (2019). Abiotic Degradation of Ionic Liquids (ILs). In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics