Skip to main content

Biodegradability of Ionic Liquids (ILs) Under Aerobic and Anaerobic Conditions

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Ionic Liquids
  • 216 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Al-Mohammed NN, Duali Hussen RS, Ali TH et al (2015) Tetrakis-imidazolium and benzimidazolium ionic liquids: a new class of biodegradable surfactants. RSC Adv 5:21865–21876. https://doi.org/10.1039/C4RA14027C

    Article  CAS  Google Scholar 

  2. Atefi F, Garcia MT, Singer RD, Scammells PJ (2009) Phosphonium ionic liquids: design, synthesis and evaluation of biodegradability. Green Chem 11:1595. https://doi.org/10.1039/b913057h

    Article  CAS  Google Scholar 

  3. Boissou F, Mühlbauer A, De Oliveira VK et al (2014) Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, γ-valerolactone and water. Green Chem 16:2463. https://doi.org/10.1039/c3gc42396d

    Article  CAS  Google Scholar 

  4. Cho C-W, Pham TPT, Kim S et al (2016) Three degradation pathways of 1-octyl-3-methylimidazolium cation by activated sludge from wastewater treatment process. Water Res 90:294–300. https://doi.org/10.1016/j.watres.2015.11.065

    Article  CAS  PubMed  Google Scholar 

  5. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637. https://doi.org/10.1039/b817717c

    Article  CAS  PubMed  Google Scholar 

  6. Dean-Raymond D, Alexander M (1977) Bacterial metabolism of quaternary ammonium compounds. Appl Environ Microbiol 33:1037–1041

    Article  CAS  Google Scholar 

  7. Deng Y, Besse-Hoggan P, Sancelme M et al (2011) Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids. J Hazard Mater 198:165–174. https://doi.org/10.1016/j.jhazmat.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  8. Deng Y, Beadham I, Ghavre M et al (2015) When can ionic liquids be considered readily biodegradable? Biodegradation pathways of pyridinium, pyrrolidinium and ammonium-based ionic liquids. Green Chem 17:1479–1491. https://doi.org/10.1039/C4GC01904K

    Article  CAS  Google Scholar 

  9. Docherty KM, Dixon JK, Kulpa CF Jr (2007) Biodegradability of imidazolium and pyridinium ionicliquids by an activated sludge microbial community. Biodegradation 18:481–493

    Article  CAS  Google Scholar 

  10. Docherty KM, Joyce MV, Kulacki KJ, Kulpa CF (2010) Microbial biodegradation and metabolite toxicity of three pyridinium-based cation ionic liquids. Green Chem 12:701–712. https://doi.org/10.1039/b919154b

    Article  CAS  Google Scholar 

  11. Docherty KM, Aiello SW, Buehler BK et al (2015) Ionic liquid biodegradability depends on specific wastewater microbial consortia. Chemosphere 136:160–166. https://doi.org/10.1016/j.chemosphere.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  12. Ferlin N, Courty M, Gatard S et al (2013a) Biomass derived ionic liquids: synthesis from natural organic acids, characterization, toxicity, biodegradation and use as solvents for catalytic hydrogenation processes. Tetrahedron 69:6150–6161. https://doi.org/10.1016/J.TET.2013.05.054

    Article  CAS  Google Scholar 

  13. Ferlin N, Courty M, Van Nhien AN et al (2013b) Tetrabutylammonium prolinate-based ionic liquids: a combined asymmetric catalysis, antimicrobial toxicity and biodegradation assessment. RSC Adv 3:26241–26251. https://doi.org/10.1039/C3RA43785J

    Article  CAS  Google Scholar 

  14. Ford L, Harjani JR, Atefi F et al (2010) Further studies on the biodegradation of ionic liquids. Green Chem 12:1783. https://doi.org/10.1039/c0gc00082e

    Article  CAS  Google Scholar 

  15. Ford L, Ylijoki KEO, Garcia MT et al (2015) Nitrogen-containing ionic liquids: biodegradation studies and utility in base-mediated reactions. Aust J Chem 68:849. https://doi.org/10.1071/CH14499

    Article  CAS  Google Scholar 

  16. Garcia MT, Ribosa I, Guindulain T et al (2001) Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment. Environ Pollut 111:169–175. https://doi.org/10.1016/S0269-7491(99)00322-X

    Article  CAS  PubMed  Google Scholar 

  17. Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids: Part II. Effect of the anion and toxicology. Green Chem 7:9–14

    Article  CAS  Google Scholar 

  18. Gathergood N, Garcia MT, Scammells PJ (2004) Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem 6:166–175

    Article  CAS  Google Scholar 

  19. Gathergood N, Scammells PJ, Garcia MT (2006) Biodegradable ionic liquids: Part III. The first readily biodegradable ionic liquids. Green Chem 8:156–160. https://doi.org/10.1039/b516206h

    Article  CAS  Google Scholar 

  20. Gou S, Yin T, Guo Q (2015) Biodegradable polyethylene glycol-based ionic liquids for effective inhibition of shale hydration. RSC Adv 5:32064–32071. https://doi.org/10.1039/C5RA02236C

    Article  CAS  Google Scholar 

  21. Harjani RD, Garcia MT, Scammells PJT, Singer JR (2008) The design and synthesis of biodegradable pyridinium ionic liquids. Green Chem 10:436–438

    Article  CAS  Google Scholar 

  22. Harjani JR, Farrell J, Garcia MT et al (2009) Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem 11:821–829. https://doi.org/10.1039/b900787c

    Article  CAS  Google Scholar 

  23. Hou X-D, Liu Q-P, Smith TJ et al (2013) Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PLoS One 8:e59145. https://doi.org/10.1371/journal.pone.0059145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jordan A, Gathergood N (2015) Biodegradation of ionic liquids – a critical review. Chem Soc Rev 44:8200–8237. https://doi.org/10.1039/C5CS00444F

    Article  CAS  PubMed  Google Scholar 

  25. Klein R, Müller E, Kraus B et al (2013) Biodegradability and cytotoxicity of choline soaps on human cell lines: effects of chain length and the cation. RSC Adv 3:23347. https://doi.org/10.1039/c3ra42812e

    Article  CAS  Google Scholar 

  26. Liwarska-Bizukojc E, Maton C, Stevens CV (2015) Biodegradation of imidazolium ionic liquids by activated sludge microorganisms. Biodegradation 26:453–463. https://doi.org/10.1007/s10532-015-9747-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markiewicz M, Maszkowska J, Nardello-Rataj V, Stolte S (2016) Readily biodegradable and low-toxic biocompatible ionic liquids for cellulose processing. RSC Adv. https://doi.org/10.1039/C6RA14435G

  28. Morrissey S, Pegot B, Coleman D et al (2009) Biodegradable, non-bactericidal oxygen-functionalised imidazolium esters: a step towards ‘greener’ ionic liquids. Green Chem 11:475. https://doi.org/10.1039/b812809j

    Article  CAS  Google Scholar 

  29. Neumann J, Grundmann O, Thöming J et al (2010) Anaerobic biodegradability of ionic liquid cations under denitrifying conditions. Green Chem 12:620. https://doi.org/10.1039/b918453h

    Article  CAS  Google Scholar 

  30. Neumann J, Cho C-W, Steudte S et al (2012) Biodegradability of fluoroorganic and cyano-based ionic liquid anions under aerobic and anaerobic conditions. Green Chem 14:410–418. https://doi.org/10.1039/C1GC16170A

    Article  CAS  Google Scholar 

  31. Neumann J, Steudte S, Cho C-W et al (2014) Biodegradability of 27 pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium ionic liquid cations under aerobic conditions. Green Chem 4:2174–2184. https://doi.org/10.1039/C3GC41997E

    Article  Google Scholar 

  32. Papadopoulou AA, Tzani A, Alivertis D et al (2016) Hydroxyl ammonium ionic liquids as media for biocatalytic oxidations. Green Chem 18:1147–1158. https://doi.org/10.1039/C5GC02381E

    Article  CAS  Google Scholar 

  33. Peric B, Sierra J, Martí E et al (2013) (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater 261C:99–105. https://doi.org/10.1016/j.jhazmat.2013.06.070

    Article  CAS  Google Scholar 

  34. Pernak J, Borucka N, Walkiewicz F et al (2011) Synthesis, toxicity, biodegradability and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids. Green Chem 13:2901. https://doi.org/10.1039/c1gc15468k

    Article  CAS  Google Scholar 

  35. Pernak J, Legosz B, Walkiewicz F et al (2015) Ammonium ionic liquids with anions of natural origin. RSC Adv 5:65471–65480. https://doi.org/10.1039/c5ra11710k

    Article  CAS  Google Scholar 

  36. Petkovic M, Ferguson JL, Gunaratne HQN et al (2010) Novel biocompatible cholinium-based ionic liquids – toxicity and biodegradability. Green Chem 12:643–649. https://doi.org/10.1039/b922247b

    Article  CAS  Google Scholar 

  37. Pham TPT, Cho C-W, Jeon C-O et al (2009) Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Environ Sci Technol 43:516–521. https://doi.org/10.1021/es703004h

    Article  CAS  PubMed  Google Scholar 

  38. Pham TPT, Cho C-W, Yun Y-S (2016) Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Environ Sci Pollut Res 23:4294–4300. https://doi.org/10.1007/s11356-015-5287-8

    Article  CAS  Google Scholar 

  39. Pisarova L, Steudte S, Dorr N et al (2012) Ionic liquid long-term stability assessment and its contribution to toxicity and biodegradation study of untreated and altered ionic liquids. Proc Inst Mech Eng Part J J Eng Tribol 226:903–922. https://doi.org/10.1177/1350650112451696

    Article  CAS  Google Scholar 

  40. Pretti C, Renzi M, Ettore Focardi S et al (2011) Acute toxicity and biodegradability of N-alkyl-N-methylmorpholinium and N-alkyl-DABCO based ionic liquids. Ecotoxicol Environ Saf 74:748–753. https://doi.org/10.1016/j.ecoenv.2010.10.032

    Article  CAS  PubMed  Google Scholar 

  41. Samorì C, Campisi T, Fagnoni M et al (2015) Pyrrolidinium-based ionic liquids: aquatic ecotoxicity, biodegradability, and algal subinhibitory stimulation. ACS Sustain Chem Eng 3:1860–1865. https://doi.org/10.1021/acssuschemeng.5b00458

    Article  CAS  Google Scholar 

  42. Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R et al (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf 71:157–165. https://doi.org/10.1016/j.ecoenv.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  43. Steudte S, Bemowsky S, Mahrova M et al (2014) Toxicity and biodegradability of dicationic ionic liquids. RSC Adv 4:5198. https://doi.org/10.1039/c3ra45675g

    Article  CAS  Google Scholar 

  44. Stolte S, Abdulkarim S, Arning J et al (2008) Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octyl -imidazolium chloride and electrochemical waste water treatment of poorly biodegradable compounds. Green Chem 10:214–224

    Article  CAS  Google Scholar 

  45. Stolte S, Steudte S, Igartua A, Stepnowski P (2011) The biodegradation of ionic liquids – the view from a chemical structure perspective. Curr Org Chem 15:1946–1973. https://doi.org/10.2174/138527211795703603

    Article  CAS  Google Scholar 

  46. Stolte S, Steudte S, Areitioaurtena O et al (2012) Ionic liquids as lubricants or lubrication additives: an ecotoxicity and biodegradability assessment. Chemosphere 89:1135–1141. https://doi.org/10.1016/j.chemosphere.2012.05.102

    Article  CAS  PubMed  Google Scholar 

  47. Stolte S, Schulz T, Cho C-WW et al (2013) Synthesis, toxicity, and biodegradation of tunable aryl alkyl ionic liquids (TAAILs). ACS Sustain Chem Eng 1:410–418. https://doi.org/10.1021/sc300146t

    Article  CAS  Google Scholar 

  48. Thu HBT, Markiewicz M, Thöming J et al (2015) Catalytically active perrhenate based ionic liquids: a preliminary ecotoxicity and biodegradability assessment. New J Chem 39. https://doi.org/10.1039/c5nj00404g

  49. Tzani A, Douka A, Papadopoulos A et al (2013) Synthesis of biscoumarins using recyclable and biodegradable task-specific ionic liquids. ACS Sustain Chem Eng 1:1180–1185. https://doi.org/10.1021/sc4001093

    Article  CAS  Google Scholar 

  50. Vieira NSM, Stolte S, Araújo JMM et al (2019) Acute aquatic toxicity and biodegradability of fluorinated ionic liquids. ACS Sustain Chem Eng 7:3733–3741. https://doi.org/10.1021/acssuschemeng.8b03653

    Article  CAS  Google Scholar 

  51. Wells AS, Coombe VT (2006) On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev 10:794–798

    Article  CAS  Google Scholar 

  52. Ying G-G (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431

    Article  CAS  Google Scholar 

  53. Yu Y, Lu X, Zhou Q et al (2008) Biodegradable naphthenic acid ionic liquids: synthesis, characterization, and quantitative structure-biodegradation relationship. Chem Eur J 14:11174–11182. https://doi.org/10.1002/chem.200800620

    Article  CAS  PubMed  Google Scholar 

  54. Zhang C, Wang H, Malhotra SV et al (2010) Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chem 12:851–858. https://doi.org/10.1039/b924264c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Markiewicz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Markiewicz, M. (2020). Biodegradability of Ionic Liquids (ILs) Under Aerobic and Anaerobic Conditions. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics