Skip to main content

Aquatic Toxicology of Ionic Liquids (ILs)

  • Living reference work entry
  • First Online:

Introduction

The broad application of ionic liquids (ILs) as process chemicals, solvents, heat transfer and storage fluids, electrolytes, and additives is encouraging significant progress in the design of novel chemical and biotechnological processes and products [1]. Both academia and industry have been using ILs to boost established processes including laborious routes, replace nefarious chemicals, or minimize waste generation, as well as create innovative technologies and products [1,2,3]. What made ILs appealing was, in the first place, their recognized unique physical and chemical properties (e.g., non-flammability, nonvolatility, high thermal stability, solvation ability, and structural versatility) [4]. Together with their “designer solvent” status, ILs started to be defined as “green” and, more recently, “high performance” chemicals [5, 6]. Often, however, such headlines represent nothing but overgeneralizations that lead to critical misconceptions within IL field. Likely, the...

This is a preview of subscription content, log in via an institution.

References

  1. Schubert TJS (2017) Current and future ionic liquid markets. In: Ionic liquids: current state and future directions, vol 1250. American Chemical Society, Washington, DC pp 35–65

    Google Scholar 

  2. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  CAS  Google Scholar 

  3. Claus J, Sommer FO, Kragl U (2018) Ionic liquids in biotechnology and beyond. Solid State Ionics 314:119–128

    Article  CAS  Google Scholar 

  4. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18(4):275–297

    Article  CAS  Google Scholar 

  5. Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10(3):691–706

    Article  CAS  Google Scholar 

  6. Kunz W, Häckl K (2016) The hype with ionic liquids as solvents. Chem Phys Lett 661:6–12

    Article  CAS  Google Scholar 

  7. Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7(2):336–360

    Article  CAS  Google Scholar 

  8. Richardson SD, Ternes TA (2018) Water analysis: emerging contaminants and current issues. Anal Chem 90(1):398–428

    Article  CAS  Google Scholar 

  9. Petkovic M, Seddon KR, Rebelo LPN, Silva Pereira C (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40(3):1383–1403

    Article  CAS  Google Scholar 

  10. Matzke M, Arning J, Ranke J, Jastorff B, Stolte S (2009) Design of inherently safer ionic liquids: toxicology and biodegradation. In: Anastas PT (ed) Handbook of green chemistry

    Google Scholar 

  11. Part 4 – Environmental Hazards. United Nations, New York and Geneva https://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev01/English/04e_part4.pdf. Accessed 16 Oct 2018

  12. Gontrani L (2018) Choline-amino acid ionic liquids: past and recent achievements about the structure and properties of these really “green” chemicals. Biophys Rev 10(3):873–880

    Article  CAS  Google Scholar 

  13. Zeisel SH, da Costa K-A (2009) Choline: an essential nutrient for public health. Nutr Rev 67(11):615–623

    Article  Google Scholar 

  14. Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem 8(1):82–90

    Article  CAS  Google Scholar 

  15. Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72(4):1170–1176

    Article  CAS  Google Scholar 

  16. Younes N, Salem R, Al-Asmakh M, Altamash T, Pintus G, Khraisheh M, Nasrallah GK (2018) Toxicity evaluation of selected ionic liquid compounds on embryonic development of Zebrafish. Ecotoxicol Environ Saf 161:17–24

    Article  CAS  Google Scholar 

  17. Sakamoto M, Ohama Y, Aoki S, Fukushi K, Mori T, Yoshimura Y, Shimizu A (2018) Effect of ionic liquids on the hatching of Artemia salina cysts. Aust J Chem 71(7):492–496

    Google Scholar 

  18. Ventura SPM, e Silva FA, Gonçalves AMM, Pereira JL, Gonçalves F, Coutinho JAP (2014) Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 102:48–54

    Article  CAS  Google Scholar 

  19. Santos JI, Gonçalves AMM, Pereira JL, Figueiredo BFHT, e Silva FA, Coutinho JAP, Ventura SPM, Gonçalves F (2015) Environmental safety of cholinium-based ionic liquids: assessing structure–ecotoxicity relationships. Green Chem 17(9):4657–4668

    Article  CAS  Google Scholar 

  20. Peric B, Sierra J, Martí E, Cruañas R, Garau MA, Arning J, Bottin-Weber U, Stolte S (2013) (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater 261:99–105

    Article  CAS  Google Scholar 

  21. e Silva FA, Siopa F, Figueiredo BFHT, Gonçalves AMM, Pereira JL, Gonçalves F, Coutinho JAP, Afonso CAM, Ventura SPM (2014) Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids. Ecotoxicol Environ Saf 108:302–310

    Article  CAS  Google Scholar 

  22. Gouveia W, Jorge TF, Martins S, Meireles M, Carolino M, Cruz C, Almeida TV, Araújo MEM (2014) Toxicity of ionic liquids prepared from biomaterials. Chemosphere 104:51–56

    Article  CAS  Google Scholar 

  23. Zhang S, Ma L, Wen P, Ye X, Dong R, Sun W, Fan M, Yang D, Zhou F, Liu W (2018) The ecotoxicity and tribological properties of choline amino acid ionic liquid lubricants. Tribol Int 121:435–441

    Article  CAS  Google Scholar 

  24. Sintra TE, Luís A, Rocha SN, Lobo Ferreira AIMC, Gonçalves F, Santos LMNBF, Neves BM, Freire MG, Ventura SPM, Coutinho JAP (2015) Enhancing the antioxidant characteristics of phenolic acids by their conversion into cholinium salts. ACS Sustain Chem Eng 3(10):2558–2565

    Article  CAS  Google Scholar 

  25. Gehlot PS, Kulshrestha A, Bharmoria P, Damarla K, Chokshi K, Kumar A (2017) Surface-active ionic liquid cholinium dodecylbenzenesulfonate: self-assembling behavior and interaction with cellulase. ACS Omega 2(10):7451–7460

    Article  CAS  Google Scholar 

  26. Taha M, Almeida MR, e Silva FA, Domingues P, Ventura SPM, Coutinho JAP, Freire MG (2015) Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications. Chem Eur J 21(12):4781–4788

    Article  CAS  Google Scholar 

  27. Lee SY, Vicente FA, e Silva FA, Sintra TE, Taha M, Khoiroh I, Coutinho JAP, Show PL, Ventura SPM (2015) Evaluating self-buffering ionic liquids for biotechnological applications. ACS Sustain Chem Eng 3(12):3420–3428

    Article  CAS  Google Scholar 

  28. Rantamäki AH, Ruokonen S-K, Sklavounos E, Kyllönen L, King AWT, Wiedmer SK (2017) Impact of surface-active guanidinium-, tetramethylguanidinium-, and cholinium-based ionic liquids on vibrio fischeri cells and dipalmitoylphosphatidylcholine liposomes. Sci Rep 7:46673

    Article  Google Scholar 

  29. Taha M, e Silva FA, Quental MV, Ventura SPM, Freire MG, Coutinho JAP (2014) Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chem 16(6):3149–3159

    Article  CAS  Google Scholar 

  30. Roy K, Das RN, Popelier PLA (2014) Quantitative structure–activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. Chemosphere 112:120–127

    Article  CAS  Google Scholar 

  31. Jessop PG (2018) Fundamental properties and practical applications of ionic liquids: concluding remarks. Faraday Discuss 206:587–601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was developed within the scope of the project CICECO – Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. The authors also acknowledge the support by the Portuguese Foundation for Science and Technology (FCT) through the project PTDC/ATP-EAM/5331/2014. F. A. e Silva acknowledges the financial support given by FCT within the PhD scholarship SFRH/BD/94901/2013. S. P. M. Ventura acknowledges FCT/MEC for a contract under Investigador FCT 2015 contract number IF/00402/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia P. M. Ventura .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

e Silva, F.A., Coutinho, J.A.P., Ventura, S.P.M. (2019). Aquatic Toxicology of Ionic Liquids (ILs). In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics