Skip to main content

Amorphous Ionic Liquid Strategies for Pharmaceutical Application

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids

Introduction

Ionic liquids (ILs) are salts with a melting point (Tm) or a glass transition (Tg) temperature below 100 °C [1]. Since the first description of air- and water-stable imidazolium ILs in 1992, the field has diverged into different applications. The first generation of ILs are solvents with tunable physical properties in chemical synthesis deploying their nonvolatile nature and thermal stability. The second generation of ILs are solvents tailoring chemical reactivity and solvation, thereby expanding chemical synthesis into liquid crystal development, biotechnology, analytics, extraction, and other applications. The third generation has been introduced as impacting biological properties for active pharmaceutical ingredients (API), e.g., when profiling APIs as IL through counterion design in an effort to control physical-chemical and pharmaceutical properties (e.g., dissolution rate) or providing additional functionality by using biologically active counterions (Fig. 1). ILs...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JJH, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429

    Article  CAS  Google Scholar 

  2. Davis JH, Forrester KJ, Merrigan T (1998) Novel organic ionic liquids (OILs) incorporating cations derived from the antifungal drug miconazole. Tetrahedron Lett 39:8955–8958

    Article  CAS  Google Scholar 

  3. Egorova KS, Seitkalieva MM, Posvyatenko AV, Khrustalev VN, Ananikov VP (2015) Cytotoxic activity of salicylic acid-containing drug models with ionic and covalent binding. ACS Med Chem Lett 6:1099–1104

    Article  CAS  Google Scholar 

  4. Balk A, Holzgrabe U, Meinel L (2015) “Pro et contra” ionic liquid drugs – challenges and opportunities for pharmaceutical translation. Eur J Pharm Biopharm 94:291–304

    Article  CAS  Google Scholar 

  5. Marrucho IM, Branco LC, Rebelo LP (2014) Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng 5:527–546

    Article  CAS  Google Scholar 

  6. Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117:7132–7189

    Article  CAS  Google Scholar 

  7. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420:1–10

    Article  CAS  Google Scholar 

  8. Stahl PH, Wermuth CG (2011) Handbook of pharmaceutical salts: properties, selection, and use, 2nd edn. Wiley-VCH, VHCA, Zurich/Weinheim

    Google Scholar 

  9. Jain N, Yang G, Machatha SG, Yalkowsky SH (2006) Estimation of the aqueous solubility of weak electrolytes. Int J Pharm 319:169–171

    Article  CAS  Google Scholar 

  10. Anderson BD, Conradi RA (1985) Predictive relationships in the water solubility of salts of a nonsteroidal anti-inflammatory drug. J Pharm Sci 74:815–820

    Article  CAS  Google Scholar 

  11. Florindo C, Araujo JM, Alves F, Matos C, Ferraz R, Prudencio C, Noronha JP, Petrovski Z, Branco L, Rebelo LP, Marrucho IM (2013) Evaluation of solubility and partition properties of ampicillin-based ionic liquids. Int J Pharm 456:553–559

    Article  CAS  Google Scholar 

  12. Stoimenovski J, MacFarlane DR, Bica K, Rogers RD (2010) Crystalline vs ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm Res 27:521–526

    Article  CAS  Google Scholar 

  13. Prakasha AS (2011) The counter ion: expanding excipient functionality. J Excip Food Chem 2:28–40

    Google Scholar 

  14. Higuchi WI (1967) Diffusional models useful in biopharmaceutics. J Pharm Sci 56:315–324

    Article  CAS  Google Scholar 

  15. Serajuddin AT (2007) Salt formation to improve drug solubility. Adv Drug Deliv Rev 59:603–616

    Article  CAS  Google Scholar 

  16. Sanan R, Kaur R, Mahajan RK (2014) Micellar transitions in catanionic ionic liquid–ibuprofen aqueous mixtures; effects of composition and dilution. RSC Adv 4:64877–64889

    Article  CAS  Google Scholar 

  17. Balk A, Widmer T, Wiest J, Bruhn H, Rybak JC, Matthes P, Muller-Buschbaum K, Sakalis A, Luhmann T, Berghausen J, Holzgrabe U, Galli B, Meinel L (2015) Ionic liquid versus prodrug strategy to address formulation challenges. Pharm Res 32:2154–2167

    Article  CAS  Google Scholar 

  18. Balk A, Wiest J, Widmer T, Galli B, Holzgrabe U, Meinel L (2015) Transformation of acidic poorly water soluble drugs into ionic liquids. Eur J Pharm Biopharm 94:73–82

    Article  CAS  Google Scholar 

  19. Wiest J, Saedtler M, Bottcher B, Grune M, Reggane M, Galli B, Holzgrabe U, Meinel L (2018) Geometrical and structural dynamics of imatinib within biorelevant colloids. Mol Pharm 15:4470–4480

    Article  CAS  Google Scholar 

  20. Wiest J, Saedtler M, Balk A, Merget B, Widmer T, Bruhn H, Raccuglia M, Walid E, Picard F, Stopper H, Dekant W, Luhmann T, Sotriffer C, Galli B, Holzgrabe U, Meinel L (2017) Mapping the pharmaceutical design space by amorphous ionic liquid strategies. J Control Release 268:314–322

    Article  CAS  Google Scholar 

  21. McCrary PD, Beasley PA, Gurau G, Narita A, Barber PS, Cojocaru OA, Rogers RD (2013) Drug specific, tuning of an ionic liquid's hydrophilic–lipophilic balance to improve water solubility of poorly soluble active pharmaceutical ingredients. New J Chem 37:2196

    Article  CAS  Google Scholar 

  22. Shadid M, Gurau G, Shamshina JL, Chuang BC, Hailu S, Guan E, Chowdhury SK, Wu JT, Rizvi SAA, Griffin RJ, Rogers RD (2015) Sulfasalazine in ionic liquid form with improved solubility and exposure. Med Chem Comm 6:1837–1841

    Article  CAS  Google Scholar 

  23. Araújo JMM, Florindo C, Pereiro AB, Vieira NSM, Matias AA, Duarte CMM, Rebelo LPN, Marrucho IM (2014) Cholinium-based ionic liquids with pharmaceutically active anions. RSC Adv 4:28126–28132

    Article  Google Scholar 

  24. Khan I, Kurnia KA, Mutelet F, Pinho SP, Coutinho JA (2014) Probing the interactions between ionic liquids and water: experimental and quantum chemical approach. J Phys Chem B 118:1848–1860

    Article  CAS  Google Scholar 

  25. Jaitely V, Karatas A, Florence AT (2008) Water-immiscible room temperature ionic liquids (RTILs) as drug reservoirs for controlled release. Int J Pharm 354:168–173

    Article  CAS  Google Scholar 

  26. Singhal D, Curatolo W (2004) Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev 56:335–347

    Article  CAS  Google Scholar 

  27. Bucar DK, Lancaster RW, Bernstein J (2015) Disappearing polymorphs revisited. Angew Chem Int Ed Engl 54:6972–6993

    Article  CAS  Google Scholar 

  28. Cojocaru OA, Kelley SP, Gurau G, Rogers RD (2013) Procainium acetate versus procainium acetate dihydrate: irreversible crystallization of a room-temperature active pharmaceutical-ingredient ionic liquid upon hydration. Cryst Growth Des 13:3290–3293

    Article  CAS  Google Scholar 

  29. Newman AW, Reutzel-Edens SM, Zografi G (2008) Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. J Pharm Sci 97:1047–1059

    Article  CAS  Google Scholar 

  30. Stoimenovski J, MacFarlane DR (2011) Enhanced membrane transport of pharmaceutically active protic ionic liquids. Chem Commun (Camb) 47:11429–11431

    Article  CAS  Google Scholar 

  31. Wang H, Gurau G, Shamshina J, Cojocaru OA, Janikowski J, MacFarlane DR, Davis JH, Rogers RD (2014) Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation. Chem Sci 5:3449

    Article  CAS  Google Scholar 

  32. Alves F, Oliveira FS, Schroder B, Matos C, Marrucho IM (2013) Synthesis, characterization, and liposome partition of a novel tetracycline derivative using the ionic liquids framework. J Pharm Sci 102:1504–1512

    Article  CAS  Google Scholar 

  33. Reggane M, Wiest J, Saedtler M, Harlacher C, Gutmann M, Zottnick SH, Piechon P, Dix I, Muller-Buschbaum K, Holzgrabe U, Meinel L, Galli B (2018) Bioinspired co-crystals of Imatinib providing enhanced kinetic solubility. Eur J Pharm Biopharm 128:290–299

    Article  CAS  Google Scholar 

  34. Zakrewsky M, Lovejoy KS, Kern TL, Miller TE, Le V, Nagy A, Goumas AM, Iyer RS, Del Sesto RE, Koppisch AT, Fox DT, Mitragotri S (2014) Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proc Natl Acad Sci U S A 111:13313–13318

    Article  CAS  Google Scholar 

  35. Kubota K, Shibata A, Yamaguchi T (2016) The molecular assembly of the ionic liquid/aliphatic carboxylic acid/aliphatic amine as effective and safety transdermal permeation enhancers. Eur J Pharm Sci 86:75–83

    Article  CAS  Google Scholar 

  36. Miwa Y, Hamamoto H, Ishida T (2016) Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Eur J Pharm Biopharm 102:92–100

    Article  CAS  Google Scholar 

  37. Miwa Y, Hamamoto H, Hikake S, Kuwabara Y (2013) A phase I, randomized, open-label, cross-over study of the pharmacokinetics, dermal tolerability, and safety of MRX-7EAT Etodolac-Lidocaine Topical Patch in healthy volunteers. J Pain 14:S72

    Article  Google Scholar 

  38. Kuwabara Y, Hamamoto H, Hikake S, Miwa Y (2013) A randomized, multi-Center, double-blind, placebo-controlled phase II/III trial to evaluate the efficacy, tolerability and safety of MRX-7EAT Etodolac-Lidocaine Topical Patch in the treatment of pain. J Pain 14:S73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Meinel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Saedtler, M., Meinel, L. (2019). Amorphous Ionic Liquid Strategies for Pharmaceutical Application. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics