Skip to main content

Design of Polymeric Ionic Liquids for the Separation of Structurally Similar Compounds

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 25 Accesses

Introduction

The separation process provides a vast variety of requisite chemical products and materials, and is the most concentrated procedure of energy and raw material consumption in the chemical industry, accounting for nearly 10–15% of the global energy demand [1,2,3,4]. Hereinto, high-performance separation and purification of structurally similar compounds is an intriguing research subject of chemical engineering, including the separation of bioactive homologues with high added value, the separation of light hydrocarbons, and the removal of industrial waste gases. The molecular structures of the substances for these systems are very similar, there remains daunting challenges associated with separation. Traditional separation methods often suffer from intensive cost, high energy consumption for regeneration, environmental pollution, which restrict the sustainable development of chemical industry [5, 6]. The design and deployment of novel materials with selective functional...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Reference

  1. Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, Maurin G, Eddaoudi M (2017) Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 46(11):3402–3430. https://doi.org/10.1039/c7cs00153c

    Article  CAS  PubMed  Google Scholar 

  2. Bao Z, Chang G, Xing H, Krishna R, Ren Q, Chen B (2016) Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy Environ Sci 9(12):3612–3641. https://doi.org/10.1039/c6ee01886f

    Article  CAS  Google Scholar 

  3. Yang L, Qian S, Wang X, Cui X, Chen B, Xing H (2020) Energy-efficient separation alternatives: metal-organic frameworks and membranes for hydrocarbon separation. Chem Soc Rev 49(15):5359–5406. https://doi.org/10.1039/c9cs00756c

    Article  CAS  PubMed  Google Scholar 

  4. Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532:435–437. https://doi.org/10.1038/532435a

    Article  PubMed  Google Scholar 

  5. Eldridge RB (1993) Olefin/paraffin separation technology: a review. Ind Eng Chem Res 32:2208–2212. https://doi.org/10.1021/ie00022a002

    Article  Google Scholar 

  6. Córdoba P (2015) Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs. Fuel 144:274–286. https://doi.org/10.1016/j.fuel.2014.12.065

    Article  CAS  Google Scholar 

  7. Zulfiqar S, Sarwar MI, Mecerreyes D (2015) Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges. Polym Chem 6(36):6435–6451. https://doi.org/10.1039/c5py00842e

    Article  CAS  Google Scholar 

  8. Zhang S, Dokko K, Watanabe M (2015) Porous ionic liquids: synthesis and application. Chem Sci 6(7):3684–3691. https://doi.org/10.1039/c5sc01374g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38(7):1009–1036. https://doi.org/10.1016/j.progpolymsci.2013.04.002

    Article  CAS  Google Scholar 

  10. Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polym 52(7):1469–1482. https://doi.org/10.1016/j.polymer.2011.01.043

    Article  CAS  Google Scholar 

  11. Sun J-K, Antonietti M, Yuan J (2016) Nanoporous ionic organic networks: from synthesis to materials applications. Chem Soc Rev 45(23):6627–6656. https://doi.org/10.1039/c6cs00597g

    Article  CAS  PubMed  Google Scholar 

  12. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36(12):1629–1648. https://doi.org/10.1016/j.progpolymsci.2011.05.007

    Article  CAS  Google Scholar 

  13. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34(5):431–448. https://doi.org/10.1016/j.progpolymsci.2008.12.001

    Article  CAS  Google Scholar 

  14. Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49(4):339–360. https://doi.org/10.1080/15583720903291116

    Article  CAS  Google Scholar 

  15. Wilke A, Yuan J, Antonietti M, Weber J (2012) Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid). ACS Macro Lett 1(8):1028–1031. https://doi.org/10.1021/mz3003352

    Article  CAS  PubMed  Google Scholar 

  16. Soll S, Zhao Q, Weber J, Yuan J (2013) Activated CO2 sorption in mesoporous imidazolium-type poly(ionic liquid)-based polyampholytes. Chem Mater 25(15):3003–3010. https://doi.org/10.1021/cm4009128

    Article  CAS  Google Scholar 

  17. Dani A, Crocellà V, Magistris C, Santoro V, Yuan J, Bordiga S (2017) Click-based porous cationic polymers for enhanced carbon dioxide capture. J Mater Chem A 5(1):372–383. https://doi.org/10.1039/c6ta08574a

    Article  CAS  Google Scholar 

  18. Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H, lnoue K (1997) Affinity for a-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409 (1):105–108. https://doi.org/10.1016/S0014-5793(97)00499-7

  19. Azzi A, Stocker A (2000) Vitamin E: non-antioxidant roles. Pro Lipid Res 39(3):231–255. https://doi.org/10.1016/S0163-7827(00)00006-0

    Article  CAS  Google Scholar 

  20. Lu Y, Yu G, Wang W-J, Ren Q, Li B-G, Zhu S (2015) Design and synthesis of thermoresponsive ionic liquid polymer in acetonitrile as a reusable extractant for separation of tocopherol homologues. Macromolecules 48(4):915–924. https://doi.org/10.1021/ma502611s

    Article  CAS  Google Scholar 

  21. Suo X, Xia L, Yang Q, Zhang Z, Bao Z, Ren Q, Yang Y, Xing H (2017) Synthesis of anion-functionalized mesoporous poly(ionic liquid)s via a microphase separation-hypercrosslinking strategy: highly efficient adsorbents for bioactive molecules. J Mater Chem A 5(27):14114–14123. https://doi.org/10.1039/c7ta01986f

    Article  CAS  Google Scholar 

  22. Yang Q, Xing H, Cao Y, Su B, Yang Y, Ren Q (2009) Selective separation of tocopherol homologues by liquid-liquid extraction using ionic liquids. Ind Eng Chem Res 48(13):6417–6422. https://doi.org/10.1021/ie801847e

    Article  CAS  Google Scholar 

  23. Zhao X, Yang Q, Xu D, Bao Z, Zhang Y, Su B, Ren Q, Xing H (2015) Design and screening of ionic liquids for C2H2/C2H4 separation by COSMO-RS and experiments. AICHE J 61(6):2016–2027. https://doi.org/10.1002/aic.14782

    Article  CAS  Google Scholar 

  24. Xie Y, Xing H, Yang Q, Bao Z, Su B, Ren Q (2015) Aqueous biphasic system containing long chain anion-functionalized ionic liquids for high-performance extraction. ACS Sustain Chem Eng 3(12):3365–3372. https://doi.org/10.1021/acssuschemeng.5b01068

    Article  CAS  Google Scholar 

  25. Liu X, Yang Q, Bao Z, Su B, Zhang Z, Ren Q, Yang Y, HuabinXing (2015) Nonaqueous lyotropic ionic liquid crystals: preparation, characterization, and application in extraction. Chem Eur J 21(25):9150–9156. https://doi.org/10.1002/chem.201500306

    Article  CAS  PubMed  Google Scholar 

  26. Jin W, Yang Q, Zhang Z, Bao Z, Ren Q, Yang Y, Xing H (2015) Self-assembly induced solubilization of drug-like molecules in nanostructured ionic liquids. Chem Commun 51(67):13170–13173. https://doi.org/10.1039/c5cc03463a

    Article  CAS  Google Scholar 

  27. Suo X, Huang Y, Li Z, Pan H, Cui X, Xing H (2021) Construction of anion-functionalized hypercrosslinked ionic porous polymers for efficient separation of bioactive molecules. Sci China Mater. https://doi.org/10.1007/s40843-021-1845-3

  28. Li L, Lin R-B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B (2018) Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 362(6413):443–446. https://doi.org/10.1126/science.aat0586

    Article  CAS  PubMed  Google Scholar 

  29. Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, Wu H, Zhou W, Dong X, Han Y, Li B, Ren Q, Zaworotko MJ, Chen B (2016) Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353(6295):141–144. https://doi.org/10.1126/science.aaf2458

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Cui X, O’Nolan D, Wen H-M, Jiang M, Krishna R, Wu H, Lin R-B, Chen Y-S, Yuan D, Xing H, Zhou W, Ren Q, Qian G, Zaworotko MJ, Chen B (2017) An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv Mater 49(21):1704210. https://doi.org/10.1002/adma.201704210

    Article  CAS  Google Scholar 

  31. Yang S, Ramirez-Cuesta AJ, Newby R, Garcia-Sakai V, Manuel P, Callear SK, Campbell SI, Tang CC, Schröder M (2015) Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework. Nat Chem 7:121–129. https://doi.org/10.1038/nchem.2114

    Article  CAS  Google Scholar 

  32. Suo X, Cui X, Yang L, Xu N, Huang Y, He Y, Dai S, Xing H (2020) Synthesis of ionic ultramicroporous polymers for selective separation of acetylene from ethylene. Adv Mater 32(29):1907601. https://doi.org/10.1002/adma.201907601

    Article  CAS  Google Scholar 

  33. Jiang L, Tian Y, Sun T, Zhu Y, Ren H, Zou X, Ma Y, Meihaus KR, Long JR, Zhu G (2018) A crystalline polyimide porous organic framework for selective adsorption of acetylene over ethylene. J Am Chem Soc 140(46):15724–15730. https://doi.org/10.1021/jacs.8b08174

    Article  CAS  PubMed  Google Scholar 

  34. Lu Y, He J, Chen Y, Wang H, Zhao Y, Han Y, Ding Y (2017) Effective acetylene/ethylene separation at ambient conditions by a pigment-based covalent-triazine framework. Macromol Rapid Commun 39(2):1700468. https://doi.org/10.1002/marc.201700468

    Article  CAS  Google Scholar 

  35. Wang Y, Zhang QQ, He K, Zhang Q, Chai L (2013) Sulfate-nitrate-ammonium aerosols over China: response to 2000-2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos Chem Phys 13(5):2635–2652. https://doi.org/10.5194/acp-13-2635-2013

    Article  CAS  Google Scholar 

  36. Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett 8(1):014003. https://doi.org/10.1088/1748-9326/8/1/014003

    Article  CAS  Google Scholar 

  37. Lee J, Keener T, Yang Y (2009) Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants. J Air Waste Manage Assoc 59(6):725–732. https://doi.org/10.3155/1047-3289.59.6.725

    Article  CAS  Google Scholar 

  38. Valente J, Quintana-Solorzano R (2011) Novel SOx removal catalysts for the FCC process: manufacture method, characterization, and pilot-scale testing. Energy Environ Sci 4(10):4096–4107. https://doi.org/10.1039/c1ee01197a

    Article  CAS  Google Scholar 

  39. Cui X, Yang Q, Yang L, Krishna R, Zhang Z, Bao Z, Wu H, Ren Q, Zhou W, Chen B, Xing H (2017) Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv Mater 29(28). https://doi.org/10.1002/adma.201606929

  40. Fu Y, Wang Z, Li S, He X, Pan C, Yan J, Yu G (2018) Functionalized covalent triazine frameworks for effective CO2 and SO2 removal. ACS Appl Mater Interfaces 10(42):36002–36009. https://doi.org/10.1021/acsami.8b13417

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J-Y, Zhang J-B, Li M, Wu Z, Dai S, Huang K (2019) Solvent-free and one-pot synthesis of ultramicroporous carbons with ultrahigh nitrogen contents for sulfur dioxide capture. Chem Eng J 391:123579. https://doi.org/10.1016/j.cej.2019.123579

    Article  CAS  Google Scholar 

  42. Carter JH, Han X, Moreau FY, Id S, Nevin A, Godfrey HGW, Tang CC, Yang S, Schröder M (2018) Exceptional adsorption and binding of sulfur dioxide in a robust zirconium-based metal–organic framework. J Am Chem Soc 140(46):15564–15567. https://doi.org/10.1021/jacs.8b08433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang S, Liu L, Sun J, Thomas KM, Davies AJ, George MW, Blake AJ, Hill AH, Fitch AN, Tang CC, Schröder M (2013) Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. J Am Chem Soc 135(13):4954–4957. https://doi.org/10.1021/ja401061m

    Article  CAS  PubMed  Google Scholar 

  44. Yu J, Ma Y, Balbuena PB (2012) Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks. Langmuir 28(21):8064–8071. https://doi.org/10.1021/la3009514

    Article  CAS  PubMed  Google Scholar 

  45. Xia L, Cui Q, Suo X, Li Y, Cui X, Yang Q, Xu J, Yang Y, Xing H (2018) Efficient, selective, and reversible SO2 capture with highly crosslinked ionic microgels via a selective swelling mechanism. Adv Funct Mater 28(13). https://doi.org/10.1002/adfm.201704292

  46. Zhang K, Ren SH, Yang X, Hou YC, Wu WZ, Bao YY (2017) Efficient absorption of low-concentration SO2 in simulated flue gas by functional deep eutectic solvents based on imidazole and its derivatives. Chem Eng J 327:128–134. https://doi.org/10.1016/j.cej.2017.06.081

    Article  CAS  Google Scholar 

  47. Chen K, Lin W, Yu X, Luo X, Ding F, He X, Li H, Wang C (2015) Designing of anion-functionalized ionic liquids for efficient capture of SO2 from flue gas. AICHE J 61(6):2028–2034. https://doi.org/10.1002/aic.14793

    Article  CAS  Google Scholar 

  48. Cui G, Zheng J, Luo X, Lin W, Ding F, Li H, Wang C (2013) Tuning anion-functionalized ionic liquids for improved SO2 capture. Angew Chem Int Ed 52(40):10620–10624. https://doi.org/10.1002/anie.201305234

    Article  CAS  Google Scholar 

  49. Suo X, Yu Y, Qian S, Zhou L, Cui X, Xing H (2020) Tailoring the pore size and chemistry of ionic ultramicroporous polymers for trace sulfur dioxide capture with high capacity and selectivity. Angew Chem Int Ed 60(13):6986–6991. https://doi.org/10.1002/anie.202013448

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Suo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suo, X. (2021). Design of Polymeric Ionic Liquids for the Separation of Structurally Similar Compounds. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_144-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics