Skip to main content

Dual Nature of Ionic Liquids: Ionic Versus Organic

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 84 Accesses

Introduction

Inorganic salts consisting solely of inorganic ions usually have high melting temperatures because of the strong Coulomb interactions. Molecular solvents comprised totally of neutral molecules typically show low melting points due to the relatively weak van der Waals (VDW) interactions. Ionic liquids (ILs) consisting of organic ions inherit both ionic and organic nature from inorganic salts and organic liquids.

The dual ionic and organic nature not only brings ILs into liquid phase at room temperature (or below 100 Â°C) but also provides ILs with many unique properties, which are distinct from both conventional inorganic molten salts and organic solvents. For example, nonflammability, non-volatility, good stability and conductivity that are absent in organic liquids originate from the ionic nature of ILs, whereas good solvability, superior tunability, and low melting temperature that are missing in inorganic molten salts are ascribed to the organic nature of ILs.

Both ionic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Matthews RP, Welton T, Hunt PA (2014) Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids. Phys Chem Chem Phys 16(7):3238

    Google Scholar 

  2. Deng L, Shi R, Wang Y, Ou-Yang ZC (2013) Hydrogen-bond rich ionic liquids with hydroxyl cationic tails. Chem Phys Lett 560:32

    Google Scholar 

  3. Strate A, Niemann T, Michalik D, Ludwig R (2017) When like charged ions attract in ionic liquids: Controlling the formation of cationic clusters by the interaction strength of the counterions. Angew Chem Int Ed 56(2):496

    Google Scholar 

  4. Ji Y, Shi R, Wang Y, Saielli G (2013) Effect of the chain length on the structure of ionic liquids: from spatial heterogeneity to ionic liquid crystals. J Phys Chem B 117(4):1104

    Google Scholar 

  5. Fumino K, Wulf A, Ludwig R (2008) The cation–anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew Chem Int Ed 47(20):3830

    Google Scholar 

  6. Shi R, Wang Y (2016) Dual ionic and organic nature of ionic liquids. Sci Rep 6:19644

    Google Scholar 

  7. Shirota H, Castner EW (2005) Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution. J Phys Chem A 109(42):9388

    Google Scholar 

  8. Zahn S, Uhlig F, Thar J, Spickermann C, Kirchner B (2008) Intermolecular forces in an ionic liquid ([Mmim][Cl]) versus those in a typical salt (NaCl). Angew Chem Int Ed 47(19):3639

    Google Scholar 

  9. Weiss VC (2010) Guggenheim’s rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids. J Phys Chem B 114(28):9183

    Google Scholar 

  10. Zhang S, Shi R, Ma X, Lu L, He Y, Zhang X, Wang Y, Deng Y (2012) Intrinsic electric fields in ionic liquids determined by vibrational stark effect spectroscopy and molecular dynamics simulation. Chem Eur J 18(38):11904

    Google Scholar 

  11. Zhang S, Chen Z, Qi X, Deng Y (2012) Distinct influence of the anion and ether group on the polarity of ammonium and imidazolium ionic liquids. New J Chem 36(4):1043

    Google Scholar 

  12. Chen ZJ, Huo Y, Cao J, Xu L, Zhang S (2016) Physicochemical properties of ether-functionalized ionic liquids: understanding their irregular variations with the ether chain length. Ind Eng Chem Res 55(44):11589

    Google Scholar 

  13. Deng J, Bai L, Zeng S, Zhang X, Nie Y, Deng L, Zhang S (2016) Ether-functionalized ionic liquid based composite membranes for carbon dioxide separation. RSC Adv 6(51):45184

    Google Scholar 

  14. Zhou Y, Xu X, Wang Z, Gong S, Chen H, Yu Z, Kiefer J (2020) The effect of introducing an ether group into an imidazolium-based ionic liquid in binary mixtures with DMSO. Phys Chem Chem Phys 22(27):15734

    Google Scholar 

  15. Zhang S, Qi X, Ma X, Lu L, Deng Y (2010) Hydroxyl ionic liquids: the differentiating effect of hydroxyl on polarity due to ionic hydrogen bonds between hydroxyl and anions. J Phys Chem B 114(11):3912

    Google Scholar 

  16. Wang L, Jin X, Li P, Zhang J, He H, Zhang S (2014) Hydroxyl-functionalized ionic liquid promoted CO2 fixation according to electrostatic attraction and hydrogen bonding interaction. Ind Eng Chem Res 53(20):8426

    Google Scholar 

  17. Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127(35):12192

    Google Scholar 

  18. Canongia Lopes JN, Padua AA (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110(7):3330

    Google Scholar 

  19. Bhargava B, Balasubramanian S, Klein ML (2008) Modelling room temperature ionic liquids. Chem Commun 29:3339

    Google Scholar 

  20. Wang Y, Jiang W, Yan T, Voth GA (2007) Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc Chem Res 40(11):1193

    Google Scholar 

  21. Urahata SM, Ribeiro MC (2004) Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: A systematic computer simulation study. J Chem Phys 120(4):1855

    Google Scholar 

  22. Russina O, Triolo A, Gontrani L, Caminiti R (2012) Mesoscopic structural heterogeneities in room-temperature ionic liquids. J Phys Chem Lett 3(1):27

    Google Scholar 

  23. Binnemans K (2005) Ionic liquid crystals. Chem Rev 105(11):4148

    Google Scholar 

  24. Causin V, Saielli G (2009) Effect of asymmetric substitution on the mesomorphic behaviour of low-melting viologen salts of bis(trifluoromethanesulfonyl)amide. J Mater Chem 19(48):9153

    Google Scholar 

  25. Starkulla G, Klenk S, Butschies M, Tussetschlager S, Laschat S (2012) Towards room temperature ionic liquid crystals: linear versus bent imidazolium phenylpyrimidines. J Mater Chem 22(41):21987

    Google Scholar 

  26. Lava K, Evrard Y, Van Hecke K, Van Meervelt L, Binnemans K (2012) Quinolinium and isoquinolinium ionic liquid crystals. RSC Adv 2(21):8061

    Google Scholar 

  27. Saielli G, Bagno A, Wang Y (2015) Insights on the isotropic-to-smectic A transition in ionic liquid crystals from coarse-grained molecular dynamics simulations: the role of microphase segregation. J Phys Chem B 119(9):3829

    Google Scholar 

  28. Saielli G, Wang Y (2016) Role of the electrostatic interactions in the stabilization of ionic liquid crystals: insights from coarse-grained MD simulations of an imidazolium model. J Phys Chem B 120(34):9152

    Google Scholar 

  29. Li S, Wang Y (2019) Percolation phase transition from ionic liquids to ionic liquid crystals. Sci Rep 9(1):13169

    Google Scholar 

  30. Cao W, Wang Y (2019) Phase behaviors of ionic liquids heating from different crystal polymorphs toward the same smectic-A ionic liquid crystal by molecular dynamics simulation. Crystals 9(1):26

    Google Scholar 

  31. Cao W, Senthilkumar B, Causin V, Swamy VP, Wang Y, Saielli G (2020) Influence of the ion size on the stability of the smectic phase of ionic liquid crystals. Soft Matter 16(2):411

    Google Scholar 

  32. Li S, Safari N, Saielli G, Wang Y (2020) Liquid-liquid phase separation of viologen bistriflimide/benzene mixtures: role of the dual ionic and organic nature of ionic liquids. J Phys Chem B 124(36):7929

    Google Scholar 

  33. Araque JC, Hettige JJ, Margulis CJ (2015) Modern room temperature ionic liquids, a simple guide to understanding their structure and how it may relate to dynamics. J Phys Chem B 119(40):12727

    Google Scholar 

  34. Araque JC, Yadav SK, Shadeck M, Maroncelli M, Margulis CJ (2015) How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes--Einstein behavior explained. J Phys Chem B 119(23):7015

    Google Scholar 

  35. Amith WD, Araque JC, Margulis CJ (2020) A pictorial view of viscosity in ionic liquids and the link to nanostructural heterogeneity. J Phys Chem Lett 11(6):2062

    Google Scholar 

  36. Araque JC, Margulis CJ (2018) In an ionic liquid, high local friction is determined by the proximity to the charge network. J Chem Phys 149(14):144503

    Google Scholar 

  37. Hu Z, Margulis CJ (2006) Heterogeneity in a room-temperature ionic liquid: Persistent local environments and the red-edge effect. Proc Natl Acad Sci 103(4):831

    Google Scholar 

  38. Lian C, Liu K, Van Aken KL, Gogotsi Y, Wesolowski DJ, Liu H, Jiang D, Wu J (2016) Enhancing the capacitive performance of electric double-layer capacitors with ionic liquid mixtures. ACS Energy Lett 1(1):21

    Google Scholar 

  39. MacFarlane DR, Chong AL, Forsyth M, Kar M, Vijayaraghavan R, Somers A, Pringle JM (2018) New dimensions in salt--solvent mixtures: a 4th evolution of ionic liquids. Faraday Discuss 206:9

    Google Scholar 

  40. Angell CA, Ansari Y, Zhao Z (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9

    Google Scholar 

  41. Watanabe M, Dokko K, Ueno K, Thomas ML (2018) From ionic liquids to solvate ionic liquids: challenges and opportunities for next generation battery electrolytes. Bull Chem Soc Jpn 91(11):1660

    Google Scholar 

  42. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD et al (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31(8):1429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanting Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shi, R., Wang, Y. (2021). Dual Nature of Ionic Liquids: Ionic Versus Organic. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics