Skip to main content

Sulfonium Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids

Introduction

Over the past decades, ionic liquids have received considerable interest as potential electrolytes for lithium rechargeable batteries due to their excellent stability, non-flammability, and nonvolatility [1,2,3,4]. However, while hundreds of ILs have been developed, most of them suffer from low conductivity caused by their intrinsic high viscosity [5,6,7]. Whereas, in 2005, Wasserscheid and coworkers reported for the first time a series of sulfonium dicyanamides with very low viscosities and high conductivities [8]. Based on this, a variety of functionalized sulfonium ILs were developed as novel low viscous electrolytes [9,10,11,12,13]. On the other hand, apart from their electrochemical applications, sulfonium salts are also being widely used as important synthetic intermediates for the synthesis of massive organic compounds due to the high reactivity of the C-S bond [14]. These sulfonium salts have been designed purposely with specific functional groups for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239

    Google Scholar 

  2. Armand M, Endres F, Macfarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Google Scholar 

  3. Navarra MA (2013) Ionic liquids as safe electrolyte components for li-metal and li-ion batteries. MRS Bull 38:548–553

    Google Scholar 

  4. Macfarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA (2014) Energy applications of ionic liquids. energy environ Sci 7:232–250

    Google Scholar 

  5. Sun H, Zhu G, Zhu Y, Lin M-C, Chen H, Li Y-Y, Hung WH, Zhou B, Wang X, Bai Y, Gu M, Huang C-L, Tai H-C, Xu X, Angell M, Shyue J-J, Dai H (2020) High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv Mater n/a:2001741

    Google Scholar 

  6. Martin S, Pratt Iii HD, Anderson TM (2017) Screening for high conductivity/low viscosity ionic liquids using product descriptors. Mol Inform 36:1600125

    Google Scholar 

  7. Buzzeo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry—A review. ChemPhysChem 5:1106–1120

    Google Scholar 

  8. Gerhard D, Alpaslan SC, Gores HJ, Uerdingen M, Wasserscheid P (2005) Trialkylsulfonium Dicyanamides - A new family of ionic liquids with very low viscosities. Chem Commun 40:5080–5082

    Google Scholar 

  9. Luo S, Zhang Z, Yang L (2008) Lithium secondary batteries using an asymmetric sulfonium-based room temperature ionic liquid as a potential electrolyte. Chin Sci Bull 53:1337–1342

    Google Scholar 

  10. Zhang Q, Liu S, Li Z, Li J, Chen Z, Wang R, Lu L, Deng Y (2009) Novel cyclic sulfonium-based ionic liquids: Synthesis, characterization, and physicochemical properties. Chem Eur J 15:765–778

    Google Scholar 

  11. Orita A, Kamijima K, Yoshida M, Yang L (2010) Application of sulfonium-, thiophenium-, and thioxonium-based salts as electric double-layer capacitor electrolytes. J Power Sources 195:6970–6976

    Google Scholar 

  12. Guo L, Pan X, Zhang C, Wang M, Cai M, Fang X, Dai S (2011) Novel hydrophobic cyclic sulfonium-based ionic liquids as potential electrolyte. J Mol Liq 158:75–79

    Google Scholar 

  13. Matsumoto H, Matsuda T, Miyazaki Y (2000) Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl)imide. Chem Lett 29:1430–1431

    Google Scholar 

  14. Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N (2019) Bond-forming and -breaking reactions at sulfur(IV): Sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem Rev 119:8701–8780

    Google Scholar 

  15. Wang D, Yu M, Liu N, Lian C, Hou Z, Wang R, Zhao R, Li W, Jiang Y, Shi X, Li S, Yin F, Li Z (2019) A sulfonium tethered peptide ligand rapidly and selectively modifies protein cysteine in vicinity. Chem Sci 10:4966–4972

    Google Scholar 

  16. Li Y, Lian C, Hou Z, Wang D, Wang R, Wan C, Zhong W, Zhao R, Wang Y, Li S, Yin F, Li Z (2020) Intramolecular methionine alkylation constructs sulfonium tethered peptides for protein conjugation. Chem Commun 56:3741–3744

    Google Scholar 

  17. Anaya LMB, Petitdemange R, Rosselin M, Ibarboure E, Garbay B, Garanger E, Deming TJ, Lecommandoux S (2020) Design of thermoresponsive elastin-like glycopolypeptides for selective lectin binding and sorting. Biomacromolecules. https://doi.org/10.1021/acs.biomac.0c00374

  18. Arvai R, Toulgoat F, Langlois BR, Sanchez J-Y, Médebielle M (2009) A simple access to metallic or onium bistrifluoromethanesulfonimide salts. Tetrahedron 65:5361–5368

    Google Scholar 

  19. Yang L, Zhang Z, Gao X, Zhang H, Mashita K (2006) Asymmetric sulfonium-based molten salts with TFSI− or PF6− anion as novel electrolytes. J Power Sources 162:614–619

    Google Scholar 

  20. Guo L, Pan X, Wang M, Zhang C, Fang X, Chen S, Dai S (2011) Novel hydrophobic ionic liquids electrolyte based on cyclic sulfonium used in dye-sensitized solar cells. Sol Energy 85:7–11

    Google Scholar 

  21. Deyab MA (2019) sulfonium-based ionic liquid as an anticorrosive agent for thermal desalination units. J Mol Liq 296:111742

    Google Scholar 

  22. Lee C-P, Peng J-D, Velayutham D, Chang J, Chen P-W, Suryanarayanan V, Ho K-C (2013) Trialkylsulfonium and tetraalkylammonium cations-based ionic liquid electrolytes for quasi-solid-state dye-sensitized solar cells. Electrochim Acta 114:303–308

    Google Scholar 

  23. Han H-B, Nie J, Liu K, Li W-K, Feng W-F, Armand M, Matsumoto H, Zhou Z-B (2010) Ionic liquids and plastic crystals based on tertiary sulfonium and bis(fluorosulfonyl)imide. Electrochim Acta 55:1221–1226

    Google Scholar 

  24. Vasudevamurthy MK, Weatherley LR, Lever M (2005) enzyme stabilization using synthetic compensatory solutes. Biocatal Biotransformation 23:285–291

    Google Scholar 

  25. Baggiolini EG, Hennessy BM, Iacobelli JA, Uskokovic MR (1987) Stereospecific synthesis of the lythgoe’s ring a aldehyde for the preparation of 1α-hdroxylated tachysterols and calciferols. Tetrahedron Lett 28:2095–2098

    Google Scholar 

  26. Nikolaev DN, Klimenicheva YS, Davidovich PB, Piotrovskii LB (2012) The use of solid phase synthesis for the preparation of monoadducts of fullerene C60. Russ Chem B+ 61:853–857

    Google Scholar 

  27. Zhao D, Fei Z, Ang WH, Dyson PJ (2007) Sulfonium-based ionic liquids incorporating the allyl functionality. Int J Mol Sci 8:304–315

    Google Scholar 

  28. Mei X, Yue Z, Tufts J, Dunya H, Mandal BK (2018) Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties. J Fluor Chem 212:26–37

    Google Scholar 

  29. Coadou E, Goodrich P, Neale AR, Timperman L, Hardacre C, Jacquemin J, Anouti M (2016) Synthesis and thermophysical properties of ether-functionalized sulfonium ionic liquids as potential electrolytes for electrochemical applications. ChemPhysChem 17:3992–4002

    Google Scholar 

  30. Lee SH, Lim YD, Seo DW, Hossain MA, Jang HH, Lee HC, Kim WG (2013) Novel cyclic sulfonium iodide containing siloxane high performance electrolyte for dye-sensitized solar cell. J Ind Eng Chem 19:322–326

    Google Scholar 

  31. Venker A, Vollgraff T, Sundermeyer J (2018) Ferrocenyl-sulfonium ionic liquids – synthesis, characterization and electrochemistry. Dalton T 47:1933–1941

    Google Scholar 

  32. Nakata T, Nakatani M, Takahashi M, Okai J, Kawaoka Y, Kouge K, Okai H (1996) Properties and reactivities of (p‐hydroxyphenyl)benzylmethylsulfonium salts for direct benzyl esterification of n‐acylpeptides. Bull Chem Soc Jpn 69:1099–1106

    Google Scholar 

  33. Jin M, Wu X, Malval JP, Wan D, Pu H (2016) Dual roles for promoting monomers to polymers: A conjugated sulfonium salt photoacid generator as photoinitiator and photosensitizer in cationic photopolymerization. J Polym Sci Polym Chem 54:2722–2730

    Google Scholar 

  34. Li L, Jia D, Wang H, Chang C, Yan J, Zhao ZK (2020) Synthesis of sulfonium N-chloramines for antibacterial applications. New J Chem 44:303–307

    Google Scholar 

  35. Yang J, Jiang M, Jin Y, Yang H, Fu H (2017) Visible-light photoredox difluoromethylation of phenols and thiophenols with commercially available difluorobromoacetic acid. Org Lett 19:2758–2761

    Google Scholar 

  36. Xu P, Zhao D, Berger F, Hamad A, Rickmeier J, Petzold R, Kondratiuk M, Bohdan K, Ritter T (2020) Site-selective late-stage aromatic [18F]Fluorination via aryl sulfonium salts. Angew Chem Int Ed 59:1956–1960

    Google Scholar 

  37. Huang C, Feng J, Ma R, Fang S, Lu T, Tang W, Du D, Gao J (2019) Redox-neutral borylation of aryl sulfonium salts via C–S activation enabled by light. Org Lett 21:9688–9692

    Google Scholar 

  38. Tian Z-Y, Zhang C-P (2019) Ullmann-type N-arylation of anilines with alkyl(aryl)sulfonium salts. Chem Commun 55:11936–11939

    Google Scholar 

  39. Varga B, Gonda Z, Tóth BL, Kotschy A, Novák Z (2020) A Ni–Ir dual photocatalytic liebeskind coupling of sulfonium salts for the synthesis of 2-benzylpyrrolidines. Eur J Org Chem 2020:1466–1471

    Google Scholar 

  40. Kumar A, Gupta AK, Devi M, Gonsalves KE, Pradeep CP (2017) Engineering multifunctionality in hybrid polyoxometalates: Aromatic sulfonium octamolybdates as excellent photochromic materials and self-separating catalysts for epoxidation. Inorg Chem 56:10325–10336

    Google Scholar 

  41. Taniki R, Matsumoto K, Hagiwara R (2012) Trialkylsulfonium fluorohydrogenate giving the highest conductivity in room temperature ionic liquids. Electrochem Solid-State Lett 15:F13

    Google Scholar 

  42. Maji T, Banerjee S, Bose A, Mandal TK (2017) A stimuli-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding antifouling polymer with tunable thermosensitivity. Polym Chem 8:3164–3176

    Google Scholar 

  43. Mcauliffe CA, Perry WD (1974) Transition metal complexes of the zwitterionic amino acid DL-methylsulfoniummethioninate and of the amido acid derived from it by facile amine deprotonation. Inorg Chim Acta 10:215–220

    Google Scholar 

  44. Forbes DC, Standen MC, Lewis DL (2003) Sulfur ylides via decarboxylation of carboxymethylsulfonium betaines: A novel and mild protocol for the preparation of oxiranes. Org Lett 5:2283–2286

    Google Scholar 

  45. Lu L, Li X, Yang Y, Xie W (2019) Frontispiece: recent progress in the construction of natural de-o-sulfonated sulfonium sugars with antidiabetic activities. Chem Eur J 25:13458–13471

    Google Scholar 

  46. Trottmann F, Ishida K, Franke J, Stanišić A, Ishida-Ito M, Kries H, Pohnert G, Hertweck C (2020) Sulfonium acids loaded onto an unusual thiotemplate assembly line construct the cyclopropanol warhead of a burkholderia virulence factor. Angew Chem Int Ed 59:1–6

    Google Scholar 

  47. Huang Y, Gao Y, He W, Wang Z, Li W, Lin A, Xu J, Tanabe G, Muraoka O, Wu X, Xie W (2019) Practical route to neokotalanol and its natural analogues: sulfonium sugars with antidiabetic activities. Angew Chem Int Ed 58:6400–6404

    Google Scholar 

  48. Sun X, Zhang J, Chen Y, Mi Y, Tan W, Li Q, Dong F, Guo Z (2019) Synthesis, characterization, and the antioxidant activity of carboxymethyl chitosan derivatives containing thiourea salts. Polymers 11:1810

    Google Scholar 

  49. Wang Q, Zhang C, Yan C, You F, Wang L (2019) One-component chemically amplified resist composed of polymeric sulfonium salt pags for high resolution patterning. Eur Polym J 114:11–18

    Google Scholar 

  50. Santa Chalarca CF, Emrick T (2017) Reactive polymer zwitterions: Sulfonium sulfonates. J Polym Sci Polym Chem 55:83–92

    Google Scholar 

  51. Imamura R, Mori H (2019) Protein-stabilizing effect of amphiphilic block copolymers with a tertiary sulfonium-containing zwitterionic segment. ACS Omega 4:18234–18247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-wei Li .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yue, Ct., Sun, P., Li, Fw. (2020). Sulfonium Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics