Skip to main content

Trizxolium Ionic Liquids and Tetrazolium Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 116 Accesses

Introduction

Compared with traditional imidazolium ionic liquids (ILs), triazolium or tetrazolium ionic liquids showed the higher positive enthalpy of formation, the higher density, the lower sensitivity, the better thermal stability, and the higher oxygen balance due to the large number of N-N and C-N bonds [1]. And besides, triazolium and tetrazolium ionic liquids also showed advantages, such as very low vapor pressure, low hydrocarbon content, nitrogen as the major decomposition gas, and so on. Thus, triazolium or tetrazolium ionic liquids have been widely used as a high-energy material, explosives, and propellants in industry and military [2, 3]. At the same time, triazolium and tetrazolium ionic liquids were exploited as precursors of N-heterocyclic carbenes ligands for transition metal catalysts [4], also used as a solvent for dissolving cellulose [5]. Therefore, triazolium and tetrazolium ionic liquids were not only employed in the preparation of efficient catalysts and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Reference

  1. Zohari N, Abrishami F, Ebrahimikia M (2016) Investigation of the effect of various substituents on the density of tetrazolium nitrate salts as green energetic materials. Z Anorg Allg Chem 642:749–760

    Article  CAS  Google Scholar 

  2. Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45:3584–3601

    Article  CAS  Google Scholar 

  3. Zhang Q, Shreeve JM (2014) Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev 114:10527–10574

    Article  CAS  Google Scholar 

  4. Levin E, Ivry E, Diesendruck CE, Lemcoff NG (2015) Water in N-heterocyclic carbene-assisted catalysis. Chem Rev 115:4607–4692

    Article  CAS  Google Scholar 

  5. Brehm M, Pulst M, Kressler J, Daniel S (2019) Triazolium-based ionic liquids: a novel class of cellulose solvents. J Phys Chem B 123:3994–4003

    Article  CAS  Google Scholar 

  6. Schweinfurth D, Hettmanczyk L, Suntrup L, Sarkar B (2017) Metal complexes of click-derived triazoles and mesoionic carbenes: electron transfer, photochemistry, magnetic bistability, and catalysis. Z Anorg Allg Chem 643:554–584

    Article  CAS  Google Scholar 

  7. Huynh HV (2018) Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem Rev 118:9457–9492

    Article  CAS  Google Scholar 

  8. Drake G, Hawkins T, Brand A, Hall L, Mckay M (2003) Energetic, low-melting salts of simple heterocycles. Propellants Explos Pyrot 28:174–180

    Article  CAS  Google Scholar 

  9. Jin CM, Ye CF, Piekarski C, Twamley B, Shreeve JM (2003) Mono and bridged azolium picrates as energetic salts. Eur J Inorg Chem 2005:3760–3767

    Article  Google Scholar 

  10. Kavun VY, Davidovich RL, Logvinova VB, Merkulov EB, Tkachev VV (2015) Synthesis, crystal structure, and NMR investigation of 4-amino-1,2,4-triazolium hexafluoridotitanate(IV). J Fluor Chem 178:68–72

    Article  CAS  Google Scholar 

  11. Denault CC, Marx PC, Takimoto HH (1968) Energy of combustion and differential thermograms of organic azides. J Chem Eng Data 13:514–516

    Article  CAS  Google Scholar 

  12. Singh D, Gardas RL (2016) Influence of cation size on the ionicity, fluidity, and physiochemical properties of 1,2,4-triazolium based ionic liquids. J Phys Chem B 120:4834–4842

    Article  CAS  Google Scholar 

  13. Alpers T, Muesmann TWT, Temme O, Christoffers J (2018) Perfluorinated 1,2,3- and 1,2,4-triazolium ionic liquids. Eur J Org Chem 2018:4331–4337

    Article  CAS  Google Scholar 

  14. Raiguel S, Thomas J, Binnemans K, Dehaen W (2018) Multi-gram scale synthesis of 1,2,3-triazolium ionic liquids and assay of their resistance towards bases. Eur J Org Chem 2018:4850–4856

    Article  CAS  Google Scholar 

  15. Jaya P, Shrestha CW, Chang T (2013) Safe and easy route for the synthesis of 1,3-dimethyl-1,2,3-triazolium salt and investigation of its anticancer activities. Bioorg Med Chem Lett 23:5909–5911

    Article  Google Scholar 

  16. Xue H, Gao Y, Twamley B, Shreeve JM (2005) New energetic salts based on nitrogen-containing heterocycles. Chem Mater 17:191–198

    Article  CAS  Google Scholar 

  17. Haltsanelt S, Liebscher J (2008) A novel and versatile access to task-specific ionic liquids based on 1,2,3-triazolium salts. Synlett 2008:1058–1060

    Article  Google Scholar 

  18. Xu XY, Li LF, Zhang ZY, Yan XY (2018) Nucleophilic substitution of 4-bromomethyltriazolium with different nucleophiles. Tetrahedron 74:6846–6853

    Article  CAS  Google Scholar 

  19. Virant M, Košmrlj J (2019) Arylation of click triazoles with diaryliodonium salts. J Org Chem 84:14030–14044

    Article  CAS  Google Scholar 

  20. Hutchinson SM, Ardón-Muñoz LG, Ratliff ML, Bolliger JL (2019) Catalytic preparation of 1-aryl-substituted 1,2,4-triazolium salts. ACS Omega 4:17923–17933

    Article  CAS  Google Scholar 

  21. von Denffer M, Klapötke TM, Kramer G, Spieß G, Welch JM (2005) Improved synthesis and x-ray structure of 5-aminotetrazolium nitrate. Propellants Explos Pyrotech 30:191–195

    Article  Google Scholar 

  22. Krukovskii IM, Molchanova MS, Evtushenko AV, Shlyapochnikov VA (1998) Qualitative estimation of the dependence of the number of energetic compounds on their oxygen coefficient. Russ Chem Bull 47:1266–1273

    Article  CAS  Google Scholar 

  23. Tao GH, Guo Y, Parrish DA, Shreeve JM (2010) Energetic 1,5-diamino-4H-tetrazoliumnitro-substituted azolates. J Mater Chem 20:2999–3005

    Article  CAS  Google Scholar 

  24. Xue H, Arritt SW, Twamley B, Shreeve JM (2004) Energetic salts from N-aminoazoles shreeve. Inorg Chem 43(25):7972–7977

    Article  CAS  Google Scholar 

  25. Jones CB, Haiges R, Schroer T, Christe KO (2006) Oxygen-balanced energetic ionic liquid. Angew Chem Int Ed 45:4981–4984

    Article  CAS  Google Scholar 

  26. Singh P, Kumar P, Kumari K, Sharma P, Mozumdar S, Chandra R (2011) A rapid and simple route for the synthesis of lead and palladium nanoparticles in tetrazolium based ionic liquid. Spectrochim Acta A 78:909–912

    Article  Google Scholar 

  27. Aridoss G, Laali KK (2011) Highly efficient synthesis of 5-substituted 1H-tetrazoles catalyzed by Cu-Zn alloy nanopowder, conversion into 1,5- and 2,5-disubstituted tetrazoles, and synthesis and nmr studies of new tetrazolium ionic liquids. Eur J Org Chem 2011:6343–6355

    Article  CAS  Google Scholar 

  28. Tona V, Maryasin B, de la Torre A, Sprachmann J, González L, Maulide N (2017) Direct regioselective synthesis of tetrazolium salts by activation of secondary amides under mild conditions. Org Lett 19:2662–2665

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linfei Xiao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiao, L. (2021). Trizxolium Ionic Liquids and Tetrazolium Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_123-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_123-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics