Skip to main content

Enhanced Ion Mobility in Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 140 Accesses

Introduction

Electrical mobility determines a set of physical chemical properties that reflect an inherent ability of charged particles, such as electrons, protons, and generally ions, to move through certain condensed medium in response to the action of external electric fields. Application of an external electric field allows to spatially separate ions in electrolytes (see electrochemical devices) [1,2,3]. In general, higher ionic mobility is considered to be a favorable property of an electrolyte, irrespective of the latter being a purely ionic liquid at room temperature (RTIL) or an ion-molecular system, in which an ionic concentration is sufficiently high to merit practical applications [4]. While many RTILs exhibit promising physical and chemical properties (low volatility, thermal stability, suitable electrochemical windows, wide liquid ranges, etc.), their charge mobility and particle mobility are, at best, mediocre [5]. Enhancement of charge mobility of RTILs is a sensible...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190

    Article  CAS  Google Scholar 

  2. Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G (2015) Electrolytes in dye-sensitized solar cells. Chem Rev 115:2136

    Article  CAS  Google Scholar 

  3. Feng G, Cummings PT (2011) Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J Phys Chem Lett 2:2859

    Article  CAS  Google Scholar 

  4. Lee AA, Kondrat S, Vella D, Goriely A (2015) Dynamics of ion transport in ionic liquids. Phys Rev Lett 115:106101

    Article  Google Scholar 

  5. Wang B, Qin L, Mu T, Xue Z, Gao G (2017) Are ionic liquids chemically stable? Chem Rev 117:7113

    Article  CAS  Google Scholar 

  6. Eftekhari A, Liu Y, Chen P (2016) Different roles of ionic liquids in lithium batteries. J Power Sources 334:221

    Article  CAS  Google Scholar 

  7. Vatamanu J, Bedrov D (2015) Capacitive energy storage: current and future challenges. J Phys Chem Lett 6:3594

    Article  CAS  Google Scholar 

  8. Chaban VV, Prezhdo OV (2013) Ionic and molecular liquids: working together for robust engineering. J Phys Chem Lett 4:1423

    Article  CAS  Google Scholar 

  9. Hunt PA, Ashworth CR, Matthews RP (2015) Hydrogen bonding in ionic liquids. Chem Soc Rev 44:1257

    Article  CAS  Google Scholar 

  10. Kirchner B, Malberg F, Firaha DS, Hollóczki O (2015) Ion pairing in ionic liquids. J Phys Condens Matter 27:463002

    Article  Google Scholar 

  11. Lopes JNC, Padua AAH (2012) CL&P: a generic and systematic force field for ionic liquids modeling. Theor Chem Accounts 131:1129

    Article  Google Scholar 

  12. Chaban VV (2016) Acetone as a polar cosolvent for pyridinium-based ionic liquids. RSC Adv 6:8906

    Article  CAS  Google Scholar 

  13. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357

    Article  CAS  Google Scholar 

  14. Chaban V (2010) Should carbon nanotubes be degasified before filling? Chem Phys Lett 500:35

    Article  CAS  Google Scholar 

  15. Chaban V (2010) Filling carbon nanotubes with liquid acetonitrile. Chem Phys Lett 496:50

    Article  CAS  Google Scholar 

  16. Zhang S, Zhang J, Zhang Y, Deng Y (2017) Nanoconfined ionic liquids. Chem Rev 117:6755

    Article  CAS  Google Scholar 

  17. Ohba T, Hata K, Chaban VV (2015) Nanocrystallization of imidazolium ionic liquid in carbon nanotubes. J Phys Chem C 119:28424

    Article  CAS  Google Scholar 

  18. Berrod Q, Ferdeghini F, Judeinstein P, Genevaz N, Ramos R, Fournier A, Dijon J, Ollivier J, Rols S, Yu D, Mole RA, Zanotti JM (2016) Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes. Nanoscale 8:7845

    Article  CAS  Google Scholar 

  19. Chaban VV, Prezhdo OV (2014) Nanoscale carbon greatly enhances mobility of a highly viscous ionic liquid. ACS Nano 8:8190

    Article  CAS  Google Scholar 

  20. Chaban VV, Prezhdo OV (2014) Computationally efficient prediction of ionic liquid properties. J Phys Chem Lett 5:1973

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chaban, V.V. (2020). Enhanced Ion Mobility in Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics