Skip to main content

Vapor-Liquid Equilibrium of Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 256 Accesses

Introduction

Vapor-liquid equilibrium (VLE) defines the distribution of chemical species between the vapor and liquid phase and is an important criterion for process engineering applications. The thermodynamics of phase equilibrium is essentially similar to chemical equilibrium that is based on the minimization of Gibbs energy at a given pressure and temperature. The main equilibrium condition is that the Gibbs free energy must be constant even for any small changes or perturbations:

$$ {(dG)}_{T,P}=0 $$
(1)

Considering that a small amount of component i (dni) evaporates and transfers from the liquid phase to the vapor phase (Fig. 1) results in that, at a given pressure and temperature, the equilibrium condition is:

$$ dG=\left({G}_i^{(v)}-{G}_i^{(l)}\right){dn}_i=0 $$
(2)
Fig. 1
figure 1

Vapor-liquid equilibrium (VLE)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lei Z, Li C, Chen B (2003) Extractive distillation: a review. Sep Purif Rev 32:121–213

    CAS  Google Scholar 

  2. Seiler M, Jork C, Kavarnou A, Arlt W, Hirsch R (2004) Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids. AICHE J 50:2439–2454

    CAS  Google Scholar 

  3. Jork C, Seiler M, Beste Y, Arlt W (2004) Influence of ionic liquids on the phase behavior of aqueous azeotropic systems. J Chem Eng Data 49:852–857

    CAS  Google Scholar 

  4. Geng W, Zhang L, Deng D, Ge Y, Ji J (2009) Experimental measurement and modeling of vapor− liquid equilibrium for the ternary system water ethanol 1-butyl-3-methylimidazolium chloride. J Chem Eng Data 55:1679–1683

    Google Scholar 

  5. Navarro P, Larriba M, García J, González EJ, Rodríguez F (2015) Vapor–liquid equilibria of {n-heptane toluene [emim][DCA]} system by headspace gas chromatography. Fluid Phase Equilib 387:209–216

    CAS  Google Scholar 

  6. Navarro P, Larriba M, García J, Rodríguez F (2016) Vapor–liquid equilibria for (n-hexane, n-octane, cyclohexane, or 2, 3-dimethylpentane) toluene {[4empy][Tf2N](0.3) [emim][DCA](0.7)} mixed ionic liquids. J Chem Eng Data 61:2440–2449

    CAS  Google Scholar 

  7. Calvar N, González B, Gómez E, Domínguez Á (2006) Vapor− liquid equilibria for the ternary system ethanol water 1-butyl-3-methylimidazolium chloride and the corresponding binary systems at 101.3 kPa. J Chem Eng Data 51:2178–2181

    CAS  Google Scholar 

  8. Calvar N, González B, Gómez E, Domínguez A (2007) Study of the behaviour of the azeotropic mixture ethanol–water with imidazolium-based ionic liquids. Fluid Phase Equilib 259:51–56

    CAS  Google Scholar 

  9. Calvar N, Gómez E, González B, Domínguez A (2010) Experimental vapor− liquid equilibria for the ternary system ethanol water 1-ethyl-3-methylpyridinium ethylsulfate and the corresponding binary systems at 101.3 kPa: study of the effect of the cation. J Chem Eng Data 55:2786–2791

    CAS  Google Scholar 

  10. Calvar N, González B, Gómez E, Domínguez Á (2008) Vapor–liquid equilibria for the ternary system ethanol water 1-ethyl-3-methylimidazolium ethylsulfate and the corresponding binary systems containing the ionic liquid at 101.3 kPa. J Chem Eng Data 53:820–825

    CAS  Google Scholar 

  11. Zhao J, Dong C, Li C, Meng H, Wang Z (2006) Isobaric vapor–liquid equilibria for ethanol–water system containing different ionic liquids at atmospheric pressure. Fluid Phase Equilib 242:147–153

    CAS  Google Scholar 

  12. Ge Y, Zhang L, Yuan X, Geng W, Ji J (2008) Selection of ionic liquids as entrainers for separation of (water ethanol). J Chem Thermodyn 40:1248–1252

    Google Scholar 

  13. Zhang L, Ge Y, Ji D, Ji J (2009) Experimental measurement and modeling of vapor– liquid equilibrium for ternary systems containing ionic liquids: A case study for the system water ethanol 1-hexyl-3-methylimidazolium chloride. J Chem Eng Data 54: 2322–2329

    Google Scholar 

  14. Orchillés AV, Miguel PJ, Vercher E, Martínez-Andreu A (2009) Using 1-ethyl-3-methylimidazolium trifluoromethanesulfonate as an entrainer for the extractive distillation of ethanol water mixtures. J Chem Eng Data 55:1669–1674

    Google Scholar 

  15. Zhao J, Li C, Wang Z (2006) Vapor pressure measurement and prediction for ethanol methanol and ethanol water systems containing ionic liquids. J Chem Eng Data 51:1755–1760

    CAS  Google Scholar 

  16. Jiang X, Wang J, Li C, Wang L, Wang Z (2007) Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate. J Chem Thermodyn 39:841–846

    Google Scholar 

  17. Wang JF, Li CX, Wang ZH (2007) Measurement and prediction of vapor pressure of binary and ternary systems containing 1-ethyl-3-methylimidazolium ethyl sulfate. J Chem Eng Data 52:1307–1312

    Google Scholar 

  18. Wang J, Li C, Wang Z, Li Z, Jiang Y (2007) Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1-ethyl-3methylimidazolium dimethylphosphate. Fluid Phase Equilib 255:186–192

    Google Scholar 

  19. Zhang Z, Zhang Q, Zhang T, Zhang Q, Li W (2016) Effect of methylimidazolium-based ionic liquids on vapor–liquid equilibrium behavior of tert-butyl alcohol water azeotropic mixture at 101.3 kPa. Chin J Chem Eng 24:365–372

    Google Scholar 

  20. Orchillés AV, Miguel PJ, González-Alfaro V, Llopis FJ, Vercher E, Martínez-Andreu A (2017) Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. J Chem Thermodyn 110:16–24

    Google Scholar 

  21. Döker M, Gmehling J (2005) Measurement and prediction of vapor–liquid equilibria of ternary systems containing ionic liquids. Fluid Phase Equilib 227:255–266

    Google Scholar 

  22. Zhang L, Deng D, Han J, Ji D, Ji J (2007) Isobaric vapor− liquid equilibria for water 2-propanol 1-butyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data 52:199–205

    Google Scholar 

  23. Li Q, Zhang J, Lei Z, Zhu J, Wang B, Huang X (2009) Isobaric vapor− liquid equilibrium for (propan-2-ol water 1-butyl-3-methylimidazolium tetrafluoroborate). J Chem Eng Data 54:2785–2788

    Google Scholar 

  24. Li Q, Xing F, Lei Z, Wang B, Chang Q (2007) Isobaric vapor–liquid equilibrium for isopropanol water 1-ethyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data 53:275–279

    Google Scholar 

  25. Westerholt A, Liebert V, Gmehling J (2009) Influence of ionic liquids on the separation factor of three standard separation problems. Fluid Phase Equilib 280:56–60

    CAS  Google Scholar 

  26. Kim H, Hwang I, Park S (2010) Isothermal vapor− liquid equilibrium data at T= 333.15 K and excess molar volumes and refractive indices at T= 298.15 K for the dimethyl carbonate methanol and isopropanol water with ionic liquids. J Chem Eng Data 55:2474–2481

    Google Scholar 

  27. Cumplido M, Lladosa E, Loras S, Pla-Franco J (2017) Isobaric vapor-liquid equilibria for extractive distillation of 1-propanol water mixture using thiocyanate-based ionic liquids. J Chem Thermodyn 113:219–228

    Google Scholar 

  28. Orchillés AV, Miguel PJ, González-Alfaro V, Llopis FJ, Vercher E, Martínez-Andreu A (2017) Isobaric vapor-liquid equilibria for the 1-propanol+water+1-ethyl-3-methylimidazolium dicyanamide system at 100 kPa. J Chem Thermodyn 113:116–123

    Google Scholar 

  29. Domańska U, Okuniewska P, Paduszyński K, Królikowska M, Zawadzki M, Więckowski M (2017) Extraction of 2-phenylethanol (PEA) from aqueous solution using ionic liquids: synthesis, phase equilibrium investigation, selectivity in separation, and thermodynamic models. J Phys Chem B 121:7689–7698

    Google Scholar 

  30. Orchillés AV, Miguel PJ, Vercher E, Martínez-Andreu A (2007) Isobaric vapor− liquid equilibria for methyl acetate methanol 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa. J Chem Eng Data 52:915–920

    Google Scholar 

  31. Orchillés AV, Miguel PJ, Vercher E, Martínez-Andreu A (2007) Isobaric vapor− liquid equilibria for ethyl acetate ethanol 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa. J Chem Eng Data 52:2325–2330

    Google Scholar 

  32. Cai J, Cui X, Zhang Y, Li R, Feng T (2010) Vapor− liquid equilibrium and liquid− liquid equilibrium of methyl acetate methanol 1-ethyl-3-methylimidazolium acetate. J Chem Eng Data 56:282–287

    Google Scholar 

  33. Li Q, Zhang J, Lei Z, Zhu J, Zhu J, Huang X (2009) Selection of ionic liquids as entrainers for the separation of ethyl acetate and ethanol. Ind Eng Chem Res 48:9006–9012

    Google Scholar 

  34. Li Q, Zhang J, Lei Z, Zhu J, Xing F (2008) Isobaric vapor− liquid equilibrium for ethyl acetate ethanol 1-ethyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data 54:193–197

    Google Scholar 

  35. Zhang L, Yuan X, Qiao B, Qi R, Ji J (2008) Isobaric vapor− liquid equilibria for water ethanol ethyl acetate 1-butyl-3-methylimidazolium acetate at low water mole fractions. J Chem Eng Data 53:1595–1601

    Google Scholar 

  36. Cao J, Yu G, Chen X, Abdeltawab AA, Al-Enizi AM (2017) Determination of vapor–liquid equilibrium of methyl acetate methanol 1-alkyl-3-methylimidazolium dialkylphosphates at 101.3 kPa. J Chem Eng Data 62:816–824

    Google Scholar 

  37. Navarro P, Larriba M, García J, Rodríguez F (2016) Vapor-liquid equilibria for n-heptane (benzene, toluene, p-xylene, or ethylbenzene) {[4empy][Tf2N](0.3) [emim][DCA](0.7)} binary ionic liquid mixture. Fluid Phase Equilib 417:41–49

    Google Scholar 

  38. Larriba M, Navarro P, Delgado-Mellado N, Stanisci V, García J, Rodríguez F (2016) Separation of aromatics from n-alkanes using tricyanomethanide-based ionic liquids: liquid-liquid extraction, vapor-liquid separation, and thermophysical characterization. J Mol Liq 223:880–889

    CAS  Google Scholar 

  39. Zhu W, Qing L, Liu B, Cai X, Fan Z (2016) Effect of imidazolium-based ionic liquid on vapor–liquid equilibria of 2-propanol acetonitrile binary system at 101.3 kPa. Fluid Phase Equilib 409:383–387

    Google Scholar 

  40. Jia P, Zhao Z, Gao Q, Zhang X (2019) Isobaric vapor–liquid equilibrium of the acetonitrile 1-propanol ionic liquids at an atmospheric pressure. J Chem Eng Data 64:2963–2972

    Google Scholar 

  41. Li W, Li L, Zhang L, Li H, Zhang T (2018) Isobaric vapor-liquid equilibrium for 2-butanone ethanol phosphate-based ionic liquids at 101.3 kPa. Fluid Phase Equilib 456:57–64

    Google Scholar 

  42. Li W, Chen X, Yin H, Li L, Zhang T (2018) Isobaric vapor–liquid equilibrium for 2-butanone ethanol system containing different ionic liquids at 101.3 kPa. J Chem Eng Data 63:380–388

    Google Scholar 

  43. Orchillés AV, Miguel PJ, González-Alfaro V, Vercher E, Martínez-Andreu A (2012) 1-ethyl-3-methylimidazolium dicyanamide as a very efficient entrainer for the extractive distillation of the acetone methanol system. J Chem Eng Data 57:394–399

    Google Scholar 

  44. Orchillés AV, Miguel PJ, Llopis FJ, Vercher E, Martínez-Andreu A (2011) Influence of some ionic liquids containing the trifluoromethanesulfonate anion on the vapor–liquid equilibria of the acetone methanol system. J Chem Eng Data 56:4430–4435

    Google Scholar 

  45. Matsuda H, Liebert V, Tochigi K, Gmehling J (2013) Influence of sulfate-based anion ionic liquids on the separation factor of the binary azeotropic system acetone methanol. Fluid Phase Equilib 340:27–30

    CAS  Google Scholar 

  46. Li W, Sun D, Zhang T, Huang Y, Zhang L, Zhang Z (2014) Phase equilibrium study of binary and ternary mixtures of ionic liquids acetone methanol. J Chem Eng Data 59:3975–3981

    CAS  Google Scholar 

  47. Li W, Sun D, Zhang T, Dai S, Pan F, Zhang Z (2014) Separation of acetone and methanol azeotropic system using ionic liquid as entrainer. Fluid Phase Equilib 383:182–187

    CAS  Google Scholar 

  48. Li W, Xu N, Xu H, Zhang A, Zhang Z, Zhang T (2017) Isobaric vapor–liquid equilibrium for ternary mixtures of acetone methanol ionic liquids at 101.3 kPa. Fluid Phase Equilib 442:20–27

    CAS  Google Scholar 

  49. Li W, Du Y, Li J, Chen X, Guo S, Zhang T (2018) Isobaric vapor-liquid equilibrium for acetone methanol system containing different ionic liquids at 101.3 kPa. Fluid Phase Equilib 459:10–17

    CAS  Google Scholar 

  50. Mortaheb HR, Mokhtarani B, Shafiee N, Sharifi A (2018) Experimental study of vapor–liquid equilibrium data for acetone methanol 1-methyl-3-octylimidazolium thiocyanate. J Solut Chem 47:2007–2020

    CAS  Google Scholar 

  51. Qiao R, Yue K, Luo C, Jin J, Ren Z, Li Q (2018) Effect of bis (trifluoromethylsulfonyl) imide-based ionic liquids on the isobaric vapor-liquid equilibrium behavior of ethanol dimethyl carbonate at 101.3 kPa. Fluid Phase Equilib 472:212–217

    CAS  Google Scholar 

  52. Zhu J, Li R, Li Z, Song X, Li C, Tang H, Li Q (2016) Measurement and correlation of isobaric vapor-liquid equilibria of methanol tetrahydrofuran 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at 101.3 kPa. Fluid Phase Equilib 423:1–7

    CAS  Google Scholar 

  53. Yue K, Luo C, Zhu J, Ren Z, Qiao R, Li Q (2018) Isobaric vapor-liquid equilibrium for chloroform ethanol 1, 3-dimethylimidazolium dimethylphosphate at 101.3 kPa. Fluid Phase Equilib 466:14–18

    CAS  Google Scholar 

  54. Yue K, Qiao R, Luo C, Zhu J, Li Q (2018) Isobaric vapor-liquid equilibrium for chloroform isopropanol 1, 3-dimethylimidazolium dimethylphosphate at 101.3 kPa. Fluid Phase Equilib 466:1–6

    CAS  Google Scholar 

  55. Lei Z, Dai C, Zhu J, Chen B (2014) Extractive distillation with ionic liquids: a review. AICHE J 60:3312–3329

    CAS  Google Scholar 

  56. Pereiro A, Araújo J, Esperança J, Marrucho I, Rebelo L (2012) Ionic liquids in separations of azeotropic systems–a review. J Chem Thermodyn 46:2–28

    CAS  Google Scholar 

  57. Gutiérrez JP, Meindersma GW, de Haan AB (2012) COSMO-RS-based ionic-liquid selection for extractive distillation processes. Ind Eng Chem Res 51:11518–11529

    Google Scholar 

  58. Swatloski RP, Visser AE, Reichert WM, Broker GA, Farina LM, Holbrey JD, Rogers RD (2002) On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chem 4:81–87

    CAS  Google Scholar 

  59. Xiao Y, Bai P, Jiang Z (2012) Vapour-liquid equilibrium for systems containing ionic liquids. Asian J Chem 24:3775–3780

    CAS  Google Scholar 

  60. Hoch PM, Espinosa J (2008) Conceptual design and simulation tools applied to the evolutionary optimization of a bioethanol purification plant. Ind Eng Chem Res 47:7381–7389

    CAS  Google Scholar 

  61. Widagdo S, Seider WD (1996) Journal review. Azeotropic distillation. AICHE J 42:96–130

    CAS  Google Scholar 

  62. Wahnschafft OM, Koehler J, Westerberg AW (1994) Homogeneous azeotropic distillation: analysis of separation feasibility and consequences for entrainer selection and column design. Comput Chem Eng 18:S31–S35

    Google Scholar 

  63. Shen C, Li X, Lu Y, Li C (2011) Effect of ionic liquid 1-methylimidazolium chloride on the vapour liquid equilibrium of water, methanol, ethanol, and {water ethanol} mixture. J Chem Thermodyn 43:1748–1753

    CAS  Google Scholar 

  64. Chávez-Islas LM, Vásquez-Medrano R, Flores-Tlacuahuac A (2010) Optimal synthesis of a high purity bioethanol distillation column using ionic liquids. Ind Eng Chem Res 50:5175–5190

    Google Scholar 

  65. Roughton BC, Christian B, White J, Camarda KV, Gani R (2012) Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput Chem Eng 42:248–262

    CAS  Google Scholar 

  66. Ramírez-Corona N, Ek N, Jiménez-Gutiérrez A (2015) A method for the design of distillation systems aided by ionic liquids. Chem Eng Process 87:1–8

    Google Scholar 

  67. Quijada-Maldonado E, Aelmans T, Meindersma G, de Haan A (2013) Pilot plant validation of a rate-based extractive distillation model for water–ethanol separation with the ionic liquid [emim][DCA] as solvent. Chem Eng J 223:287–297

    CAS  Google Scholar 

  68. Pacheco-Basulto JÁ, Hernández-McConville D, Barroso-Muñoz FO, Hernández S, Segovia-Hernández JG, Castro-Montoya AJ, Bonilla-Petriciolet A (2012) Purification of bioethanol using extractive batch distillation: simulation and experimental studies. Chem Eng Process 61:30–35

    CAS  Google Scholar 

  69. Meindersma GW, Quijada-Maldonado E, Aelmans TA, Hernandez JPGde Haan AB (2012) Ionic liquids in extractive distillation of ethanol/water: From laboratory to pilot plant. In Ionic liquids: Science and applications pp. 239-257, ACS Publications, Washington D.C.

    Google Scholar 

  70. Zhu Z, Geng X, He W, Chen C, Wang Y, Gao J (2018) Computer-aided screening of ionic liquids as entrainers for separating methyl acetate and methanol via extractive distillation. Ind Eng Chem Res 57:9656–9664

    CAS  Google Scholar 

  71. Song Z, Zhou T, Qi Z, Sundmacher K (2017) Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process. ACS Sustain Chem Eng 5:3382–3389

    CAS  Google Scholar 

  72. Inokuma K, Liao JC, Okamoto MHanai T (2010) Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. J Biosci Bioeng 110:696–701

    CAS  PubMed  Google Scholar 

  73. Qiu T, Zhang P, Yang J, Xiao L, Ye C (2014) Novel procedure for production of isopropanol by transesterification of isopropyl acetate with reactive distillation. Ind Eng Chem Res 53:13881–13891

    CAS  Google Scholar 

  74. Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AICHE J 47:2384–2389

    CAS  Google Scholar 

  75. Gmehling J, Menke J, Krafczyk J, Fischer K, Pereira Nunes S, Peinemann K (1994) Azeotropic data. VCH-Verlag-Ges., Weinheim, Germany

    Google Scholar 

  76. Lei Z, Wang H, Zhou R, Duan Z (2002) Influence of salt added to solvent on extractive distillation. Chem Eng J 87:149–156

    CAS  Google Scholar 

  77. Lei Z, Chen B, Ding Z (2005) Special distillation processes. Elsevier, Amsterdam

    Google Scholar 

  78. Luyben WL (2008) Effect of solvent on controllability in extractive distillation. Ind Eng Chem Res 47:4425–4439

    CAS  Google Scholar 

  79. Arlt W, Seiler M, Jork C, Schneider T (2002) Ionic liquids as selective additives for the separation of close-boiling or azeotropic mixtures. World Patent WO/2005/016484

    Google Scholar 

  80. Vallero DA (2014) Fundamentals of air pollution. Academic press, Cambridge, Massachusetts

    Google Scholar 

  81. Sun Y, Zhang Y, Di G, Wang X, Prausnitz JM, Jin L (2018) Vapor–liquid equilibria for R1234ze (E) and three imidazoliumbased ionic liquids as working pairs in absorption–refrigeration cycle. J Chem Eng Data 63:3053–3060

    CAS  Google Scholar 

  82. Cera-Manjarres A, Salavera D, Coronas A (2018) Vapour pressure measurements of ammonia/ionic liquids mixtures as suitable alternative working fluids for absorption refrigeration technology. Fluid Phase Equilib 476:48–60

    CAS  Google Scholar 

  83. Li J, Wang K, Lian M, Li Z (2019) Vapor liquid equilibrium prediction of methanol–ionic liquid systems using UNIFAC model to select alternative working fluids of absorption cycle. Asia Pac J Chem Eng 14:e2281

    Google Scholar 

  84. Kumełan J, Pérez-Salado Kamps Á, Tuma D, Yokozeki A, Shiflett MB, Maurer G (2008) Solubility of tetrafluoromethane in the ionic liquid [hmim][Tf2N]. J Phys Chem B 112:3040–3047

    PubMed  Google Scholar 

  85. Shojaeian A, Fatoorehchi H (2019) Modeling solubility of refrigerants in ionic liquids using Peng Robinson-two state equation of state. Fluid Phase Equilib 486:80–90

    CAS  Google Scholar 

  86. Shiflett MB, Corbin DR, Elliott BA, Yokozeki A (2013) Sorption of trifluoromethane in zeolites and ionic liquid. J Chem Thermodyn 64:40–49

    CAS  Google Scholar 

  87. Shiflett MB, Yokozeki A (2006) Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids. AICHE J 52:1205–1219

    CAS  Google Scholar 

  88. Dong L, Zheng D, Sun G, Wu X (2011) Vapor–liquid equilibrium measurements of difluoromethane [Emim] OTf, difluoromethane [Bmim] OTf, difluoroethane [Emim] OTf, and difluoroethane [Bmim] OTf systems. J Chem Eng Data 56:3663–3668

    CAS  Google Scholar 

  89. Liu X, He M, Lv N, Qi X, Su C (2015) Solubilities of R-161 and R-143a in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. Fluid Phase Equilib 388:37–42

    CAS  Google Scholar 

  90. Shiflett MB, Harmer MA, Junk CP, Yokozeki A (2006) Solubility and diffusivity of difluoromethane in room-temperature ionic liquids. J Chem Eng Data 51:483–495

    CAS  Google Scholar 

  91. Shiflett MB, Yokozeki A (2006) Gaseous absorption of fluoromethane, fluoroethane, and 1, 1, 2, 2-tetrafluoroethane in 1-butyl-3-methylimidazolium hexafluorophosphate. Ind Eng Chem Res 45:6375–6382

    CAS  Google Scholar 

  92. Raeissi S, Peters C (2010) High pressure phase behaviour of methane in 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. Fluid Phase Equilib 294:67–71

    CAS  Google Scholar 

  93. Kumełan J, Pérez-Salado Kamps Á, Tuma D, Maurer G (2007) Solubility of the single gases methane and xenon in the ionic liquid [hmim][Tf2N]. Ind Eng Chem Res 46:8236–8240

    Google Scholar 

  94. Bermejo MD, Fieback TM, Martín Á (2013) Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: experimental determination and modeling. J Chem Thermodyn 58:237–244

    CAS  Google Scholar 

  95. Shiflett MB, Yokozeki A (2007) Solubility differences of halocarbon isomers in ionic liquid [emim][Tf2N]. J Chem Eng Data 52:2007–2015

    CAS  Google Scholar 

  96. Shiflett MB, Yokozeki A (2008) Binary vapor–liquid and vapor–liquid–liquid equilibria of hydrofluorocarbons (HFC-125 and HFC-143a) and hydrofluoroethers (HFE-125 and HFE-143a) with ionic liquid [emim][Tf2N]. J Chem Eng Data 53:492–497

    CAS  Google Scholar 

  97. Ren W, Scurto AM, Shiflett MBYokozeki A (2009) Phase behavior and equilibria of ionic liquids and refrigerants: 1-ethyl-3-methyl-imidazolium bis (trifluoromethylsulfonyl) imide ([EMIm][Tf2N]) and R-134a. In ACS Publications, Washington, D.C

    Google Scholar 

  98. Ren W, Scurto AM (2009) Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1, 1, 1, 2-tetrafluoroethane (R-134a). Fluid Phase Equilib 286:1–7

    CAS  Google Scholar 

  99. Fallanza M, Ortiz A, Gorri D, Ortiz I (2013) Propylene and propane solubility in imidazolium, pyridinium, and tetralkylammonium based ionic liquids containing a silver salt. J Chem Eng Data 58:2147–2153

    CAS  Google Scholar 

  100. Kim Y, Jang J, Lim B, Kang JW, Lee C (2007) Solubility of mixed gases containing carbon dioxide in ionic liquids: measurements and predictions. Fluid Phase Equilib 256:70–74

    CAS  Google Scholar 

  101. Ahmed SA, Chatterjee A, Maity B, Seth D (2015) Thermodynamic behavior of binary mixtures of 1-butyl-1-methylpyrrolidinium iodide and alcohols. J Chem Eng Data 60:2301–2307

    CAS  Google Scholar 

  102. Calvar N, Domínguez Á, Macedo E (2014) Osmotic coefficients of alcoholic mixtures containing BMpyrDCA: experimental determination and correlation. J Chem Thermodyn 72:9–15

    CAS  Google Scholar 

  103. Ahmed SA, Chatterjee A, Maity B, Seth D (2014) Osmotic properties of binary mixtures of 1-butyl-1-methylpyrrolidinium iodide and water. J Mol Liq 200:349–353

    CAS  Google Scholar 

  104. Shekaari H, Mousavi SS (2009) Influence of alkyl chain on the thermodynamic properties of aqueous solutions of ionic liquids 1-alkyl-3-methylimidazolium bromide at different temperatures. J Chem Thermodyn 41:90–96

    CAS  Google Scholar 

  105. Calvar N, González B, Domínguez Á, Macedo EA (2009) Osmotic coefficients of binary mixtures of 1-butyl-3-methylimidazolium methylsulfate and 1, 3-dimethylimidazolium methylsulfate with alcohols at T= 323.15 K. J Chem Thermodyn 41:617–622

    CAS  Google Scholar 

  106. Calvar N, González B, Domínguez Á, Macedo EA (2009) Vapour pressures and osmotic coefficients of binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate with alcohols at T= 323.15 K. J Chem Thermodyn 41:1439–1445

    CAS  Google Scholar 

  107. Zafarani-Moattar MT, Sarmad S (2010) Osmotic and activity coefficient of 1-Ethyl-3-methylimidazolium bromide in aqueous solutions of potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and tripotassium phosphate at T= 298.15 K. J Chem Eng Data 55:5182–5190

    CAS  Google Scholar 

  108. Gardas RL, Dagade DH, Coutinho JA, Patil KJ (2008) Thermodynamic studies of ionic interactions in aqueous solutions of imidazolium-based ionic liquids [Emim][Br] and [Bmim][Cl]. J Phys Chem B 112:3380–3389

    CAS  PubMed  Google Scholar 

  109. Safarov J, Verevkin SP, Bich E, Heintz A (2006) Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butylimidazolium octyl sulfate and 1-methyl-3-octylimidazolium tetrafluoroborate. J Chem Eng Data 51:518–525

    CAS  Google Scholar 

  110. Noshadi S, Sadeghi R (2017) Evaluation of the capability of ionic liquid–amino acid aqueous systems for the formation of aqueous biphasic systems and their applications in extraction. J Phys Chem B 121:2650–2664

    CAS  PubMed  Google Scholar 

  111. Zafarani-Moattar MT, Shekaari H, Haji Agha EM (2016) Vapor – liquid equilibria study of the ternary systems containing sucrose in aqueous solutions of ionic liquids, 1-butyl-3-methyl imidazolium bromide and 1-hexyl-3-methyl imidazolium bromide at 298.15 K and atmospheric pressure. Fluid Phase Equilib 429:45–54

    CAS  Google Scholar 

  112. Zafarani-Moattar MT, Shekaari H, Agha EMH (2017) Thermodynamic studies on the phase equilibria of ternary {ionic liquid, 1-hexyl-3-methyl imidazolium chloride D-fructose or sucrose water} systems at 298.15 K. Fluid Phase Equilib 436:38–46

    CAS  Google Scholar 

  113. Noshadi S, Sadeghi R (2017) Vapor pressure osmometry determination of vapor-liquid equilibria behavior of aqueous imidazolium-based ionic liquid + amino acid systems. Fluid Phase Equilib 447:125–131

    CAS  Google Scholar 

  114. Moradian T, Sadeghi R (2013) Isopiestic investigations of the interactions of water-soluble polymers with imidazolium-based ionic liquids in aqueous solutions. J Phys Chem B 117:7710–7717

    CAS  PubMed  Google Scholar 

  115. Zafarani-Moattar MT, Sarmad S (2011) Osmotic and activity coefficient of 1-ethyl-3-methylimidazolium chloride in aqueous solutions of tri-potassium phosphate, potassium carbonate, and potassium chloride at T= 298.15 K. Calphad 35:331–341

    CAS  Google Scholar 

  116. Królikowska M, Paduszyński K, Zawadzki M (2019) (Vapor + liquid) phase equilibria of an aqueous solution of bromide-based ionic liquids – measurements, correlations and application to absorption cycles. Fluid Phase Equilib 494:201–211

    Google Scholar 

  117. Stodt MFB, Stuckenholz M, Kiefer J, Schröer W, Rathke B (2019) Vapor liquid equilibria of 1-ethyl-3-methylimidazolium triflate (C2mimTfO) and n-alkyl alcohol mixtures. J Phys Chem B 123:6076–6089

    CAS  PubMed  Google Scholar 

  118. Musale SP, Dagade DH (2019) Effect of hydrophobicity and H-bonding abilities of ions on osmotic coefficients of aqueous diethylammonium based protic ionic liquid solutions at 298.15 K. J Mol Liq 276:497–502

    CAS  Google Scholar 

  119. Bai L, He M, Liu X, Ye Z (2019) A new activity coefficient model for the solution of molecular solute ionic liquid. Fluid Phase Equilib 493:144–152

    CAS  Google Scholar 

  120. Li Q, Zhu W, Liu B, Fan Z, Zhu Y, Gao Z (2016) Measurement and correlation of the vapor–liquid equilibrium for methanol acetonitrile imidazolium-based ionic liquids at 101.3 kPa. J Chem Thermodyn 101:25–30

    CAS  Google Scholar 

  121. Abrams DS, Prausnitz JM (1975) Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AICHE J 21:116–128

    CAS  Google Scholar 

  122. Renon H, Prausnitz JM (1968) Local compositions in thermodynamic excess functions for liquid mixtures. AICHE J 14:135–144

    CAS  Google Scholar 

  123. Chen C, Evans LB (1986) A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AICHE J 32:444–454

    CAS  Google Scholar 

  124. Haghtalab A, Vera J (1988) A nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AICHE J 34:803–813

    CAS  Google Scholar 

  125. Papaiconomou N, Simonin J, Bernard O, Kunz W (2002) MSA-NRTL model for the description of the thermodynamic properties of electrolyte solutions. Phys Chem Chem Phys 4:4435–4443

    CAS  Google Scholar 

  126. Zhao E, Yu M, Sauvé RE, Khoshkbarchi MK (2000) Extension of the Wilson model to electrolyte solutions. Fluid Phase Equilib 173:161–175

    CAS  Google Scholar 

  127. Maia FM, Calvar N, González EJ, Carneiro AP, Rodriguez O, Macedo EA (2013) Modeling of ionic liquid systems: phase equilibria and physical properties. In: Ionic liquids-new aspects for the future. InTech, pp 31–60, InTech, London

    Google Scholar 

  128. Pitzer KS (1991) Ion interaction approach: theory and data correlation. Activity Coefficients in Electrolyte Solutions 2:75–153

    Google Scholar 

  129. Sardroodi JJ, Atabay M, Azamat J (2012) Isopiestic determination of the osmotic coefficient and vapour pressure of NR-4-(N, N-dimethylamino) pyridinium tetrafluoroborate (R= C4H9, C5H11, C6H13) in the ethanol solution at T= 298.15 K. J Chem Thermodyn 49:70–74

    CAS  Google Scholar 

  130. Shekaari H, Armanfar E (2009) Physical properties of aqueous solutions of ionic liquid, 1-propyl-3-methylimidazolium methyl sulfate, at T=(298.15 to 328.15) K. J Chem Eng Data 55:765–772

    Google Scholar 

  131. Calvar N, Gonzalez B, Gómez E, Domínguez A (2009) Vapor− liquid equilibria for the ternary system ethanol water 1-butyl-3-methylimidazolium methylsulfate and the corresponding binary systems at 101.3 kPa. J Chem Eng Data 54:1004–1008

    CAS  Google Scholar 

  132. Shekaari H, Mousavi SS (2009) Measurement and modeling of osmotic coefficients of aqueous solution of ionic liquids using vapor pressure osmometry method. Fluid Phase Equilib 279:73–79

    CAS  Google Scholar 

  133. Jongmans MT, Schuur B, de Haan AB (2012) Binary and ternary LLE data of the system (ethylbenzene styrene 1-ethyl-3-methylimidazolium thiocyanate) and binary VLE data of the system (styrene 1-ethyl-3-methylimidazolium thiocyanate). J Chem Thermodyn 47:234–240

    CAS  Google Scholar 

  134. Kato R, Krummen M, Gmehling J (2004) Measurement and correlation of vapor–liquid equilibria and excess enthalpies of binary systems containing ionic liquids and hydrocarbons. Fluid Phase Equilib 224:47–54

    CAS  Google Scholar 

  135. González B, Calvar N, Domínguez Á, Macedo EA (2008) Osmotic coefficients of aqueous solutions of four ionic liquids at T=(313.15 and 333.15) K. J Chem Thermodyn 40:1346–1351

    Google Scholar 

  136. Redlich O, Kwong J (1949) On the thermodynamics of solutions. V. an equation of state. Fugacities of gaseous solutions. Chem Rev 44:233

    CAS  PubMed  Google Scholar 

  137. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27:1197–1203

    CAS  Google Scholar 

  138. Peng D, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64

    CAS  Google Scholar 

  139. Valderrama J, Robles P (2007) Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind Eng Chem Res 46:1338–1344

    CAS  Google Scholar 

  140. Joback KG, Reid RC (1987) Estimation of pure-component properties from group-contributions. Chem Eng Commun 57:233–243

    CAS  Google Scholar 

  141. Valderrama JO, Sanga WW, Lazzús JA (2008) Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind Eng Chem Res 47:1318–1330

    CAS  Google Scholar 

  142. Álvarez VH, Serrão D, da Silva JL, Barbosa MR, Aznar M (2013) Vapor–liquid and liquid–liquid equilibrium for binary systems ester a new protic ionic liquid. Ionics 19:1263–1269

    Google Scholar 

  143. Arce PF, Robles PA, Graber TA, Aznar M (2010) Modeling of high-pressure vapor–liquid equilibrium in ionic liquids gas systems using the PRSV equation of state. Fluid Phase Equilib 295:9–16

    CAS  Google Scholar 

  144. Yazdizadeh M, Rahmani F, Forghani AA (2011) Thermodynamic modeling of CO2 solubility in ionic liquid ([Cn-mim][Tf2N]; n= 2, 4, 6, 8) with using Wong-Sandler mixing rule, Peng-Rabinson equation of state (EOS) and differential evolution (DE) method. Korean J Chem Eng 28:246–251

    CAS  Google Scholar 

  145. Song HN, Lee B, Lim JS (2009) Measurement of CO2 solubility in ionic liquids: [BMP][TfO] and [P14,6,6,6][Tf2N] by measuring bubble-point pressure. J Chem Eng Data 55:891–896

    Google Scholar 

  146. Shariati A, Peters CJ (2003) High-pressure phase behavior of systems with ionic liquids: measurements and modeling of the binary system fluoroform 1-ethyl-3-methylimidazolium hexafluorophosphate. J Supercrit Fluids 25:109–117

    CAS  Google Scholar 

  147. Mattedi S, Carvalho PJ, Coutinho JA, Alvarez VH, Iglesias M (2011) High pressure CO2 solubility in N-methyl-2-hydroxyethylammonium protic ionic liquids. J Supercrit Fluids 56:224–230

    CAS  Google Scholar 

  148. Hwang S, Park Y, Park K (2011) Measurement and prediction of phase behaviour for 1-alkyl-3-methylimidazolium tetrafluoroborate and carbon dioxide: effect of alkyl chain length in imidazolium cation. J Chem Thermodyn 43:339–343

    CAS  Google Scholar 

  149. Xie Y, Dong H, Zhang S, Lu X, Ji X (2014) Effect of water on the density, viscosity, and CO2 solubility in choline chloride/urea. J Chem Eng Data 59:3344

    CAS  Google Scholar 

  150. Shiflett MB, Yokozeki A (2009) Separation of carbon dioxide and sulfur dioxide using room-temperature ionic liquid [bmim][MeSO4]. Energy Fuel 24:1001–1008

    Google Scholar 

  151. Shiflett MB, Yokozeki A (2005) Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [bmim][BF4]. Ind Eng Chem Res 44:4453–4464

    CAS  Google Scholar 

  152. Alvarez VH, Mattedi S, Aznar M (2011) Isobaric (vapor liquid) equilibria of 1-ethyl-3-methylimidazolium ethylsulfate plus (propionaldehyde or valeraldehyde): experimental data and prediction. J Chem Thermodyn 43:895–900

    CAS  Google Scholar 

  153. Yokozeki A, Shiflett MB (2010) Water solubility in ionic liquids and application to absorption cycles. Ind Eng Chem Res 49:9496–9503

    CAS  Google Scholar 

  154. Yokozeki A, Shiflett MB (2007) Vapor–liquid equilibria of ammonia ionic liquid mixtures. Appl Energy 84:1258–1273

    CAS  Google Scholar 

  155. Yokozeki A, Shiflett MB (2007) Ammonia solubilities in room-temperature ionic liquids. Ind Eng Chem Res 46:1605–1610

    CAS  Google Scholar 

  156. Yokozeki A, Shiflett MB (2007) Hydrogen purification using room-temperature ionic liquids. Appl Energy 84:351–361

    CAS  Google Scholar 

  157. Shin E, Lee B, Lim JS (2008) High-pressure solubilities of carbon dioxide in ionic liquids: 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. J Supercrit Fluids 45:282–292

    Google Scholar 

  158. Álvarez VH, Aznar M (2008) Thermodynamic modeling of vapor–liquid equilibrium of binary systems ionic liquid supercritical {CO2 or CHF3} and ionic liquid hydrocarbons using Peng–Robinson equation of state. J Chin Inst Chem Eng 39:353–360

    Google Scholar 

  159. Chapman WG, Gubbins KE, Jackson G, Radosz M (1989) SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib 52:31–38

    CAS  Google Scholar 

  160. Wertheim M (1984) Fluids with highly directional attractive forces. I. Statistical thermodynamics. J Stat Phys 35:19–34

    Google Scholar 

  161. Wertheim M (1984) Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J Stat Phys 35:35–47

    Google Scholar 

  162. Wertheim M (1986) Fluids with highly directional attractive forces. III. Multiple attraction sites. J Stat Phys 42:459–476

    Google Scholar 

  163. Wertheim M (1986) Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J Stat Phys 42:477–492

    Google Scholar 

  164. Andreu JS, Vega LF (2007) Capturing the solubility behavior of CO2 in ionic liquids by a simple model. J Phys Chem C 111:16028–16034

    CAS  Google Scholar 

  165. Andreu JS, Vega LF (2008) Modeling the solubility behavior of CO2, H2, and Xe in [Cn-mim][Tf2N] ionic liquids. J Phys Chem B 112:15398–15406

    CAS  PubMed  Google Scholar 

  166. Ji X, Adidharma H (2010) Thermodynamic modeling of CO2 solubility in ionic liquid with heterosegmented statistical associating fluid theory. Fluid Phase Equilib 293:141–150

    CAS  Google Scholar 

  167. Llovell F, Valente E, Vilaseca O, Vega L (2011) Modeling complex associating mixtures with [Cn-mim][Tf2N] ionic liquids: predictions from the soft-SAFT equation. J Phys Chem B 115:4387–4398

    CAS  PubMed  Google Scholar 

  168. Paduszynski K, Domanska U (2011) Solubility of aliphatic hydrocarbons in piperidinium ionic liquids: measurements and modeling in terms of perturbed-chain statistical associating fluid theory and nonrandom hydrogen-bonding theory. J Phys Chem B 115:12537–12548

    CAS  PubMed  Google Scholar 

  169. Paduszyński K, Chiyen J, Ramjugernath D, Letcher TM, Domańska U (2011) Liquid–liquid phase equilibrium of (piperidinium-based ionic liquid an alcohol) binary systems and modelling with NRHB and PCP-SAFT. Fluid Phase Equilib 305:43–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mikkola .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sarmad, S., Mikkola, J. (2020). Vapor-Liquid Equilibrium of Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_107-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_107-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics