Skip to main content

Surface Tension of Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 54 Accesses

Introduction

Among the unique properties of ionic liquids, surface tension plays a special and crucial role. Since the ionic nature of ILs makes it extremely difficult to accurately measure the cohesive forces present in the liquid, in view of this situation, the corresponding states principles and other powerful correlation techniques are often applied to solve the issue, which is also still a challenge. So it is found that surface tension value is an effective way to avoid this problem, and it is possible to access at the liquid-vacuum boundary. Surface tension is a measure of cohesive forces between liquid molecules present at the surface, and it represents the quantification of force per unit length of free energy per unit area. Thus, the measurement of surface tension of ionic liquids is one of the most effective ways to (indirectly) access the intrinsic energetics that are involved in the interactions between the ions [1]. In addition, surface tension data are also a powerful...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tariq M, Freire MG, Saramago B, Coutinho JAP, Lopes JNC, Rebelo LPN (2012) Surface tension of ionic liquids and ionic liquid solutions. Chem Soc Rev 41:829–868

    Article  CAS  PubMed  Google Scholar 

  2. Lockett V, Sedev R, Harmer S, Ralston J, Horne M, Rodopoulos T (2010) Orientation and mutual location of ions at the surface of ionic liquids. Phys Chem Chem Phys 12:13816–13827

    Article  CAS  PubMed  Google Scholar 

  3. Luís A, Shimizu K, Araújo JMM, Carvalho PJ, Lopes-da-Silva JA, Lopes JNC, Rebelo LPN, Coutinho JAP, Freire MG, Pereiro AB (2016) Influence of nanosegregation on the surface tension of fluorinated ionic liquids. Langmuir 32:6130–6139

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rivera JL, Molina-Rodríguez L, Ramos-Estrada M, Navarro-Santos P, Lima E (2018) Interfacial properties of the ionic liquid [bmim][triflate] over a wide range of temperatures. RSC Adv 8:10115–10123

    Article  CAS  Google Scholar 

  5. Ghatee MH, Zolghadr AR (2008) Surface tension measurements of imidazolium-based ionic liquids at liquid–vapor equilibrium. Fluid Phase Equilib 263:168–175

    Article  CAS  Google Scholar 

  6. Rebelo LPN, Lopes JNC, Esperanc JMSS, Filipe E (2005) On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J Phys Chem B 109:6040–6043

    Article  CAS  PubMed  Google Scholar 

  7. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  8. Berthon L, Nikitenko SI, Bisel I, Berthon C, Faucon M, Saucerotte B, Zorza N, Moisy P (2006) Influence of gamma irradiation on hydrophobic room-temperature ionic liquids [BuMeIm]PF6 and [BuMeIm](CF3SO2)2N. Dalton Trans 21:2526–2534

    Article  Google Scholar 

  9. Kilaru P, Baker GA, Scovazzo P (2007) Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations. J Chem Eng Data 52:2306–2314

    Article  CAS  Google Scholar 

  10. Jin H, O’Hare B, Dong J, Arzhantsev S, Baker GA, Wishart JF, Benesi AJ, Maroncelli M (2008) Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. J Phys Chem B 112:81–92

    Article  CAS  PubMed  Google Scholar 

  11. Muhammad A, Mutalib MIA, Wilfred CD, Murugesan T, Shafeeq AS (2008) Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions. J Chem Thermodyn 40:1433–1438

    Article  CAS  Google Scholar 

  12. Halka V, Tsekov R, Freyland W (2005) Peculiarity of the liquid/vapour interface of an ionic liquid: study of surface tension and viscoelasticity of liquid BMImPF6 at various temperatures. Phys Chem Chem Phys 7:2038–2043

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu K, Heller BSJ, Maier F, Steinrück HP, Lopes JNC (2018) Probing the surface tension of ionic liquids using the Langmuir principle. Langmuir 34:4408–4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shang Q, Yan FY, Xia SQ, Wang Q, Ma PS (2013) Predicting the surface tensions of ionic liquids by the quantitative structure property relationship method using a topological index. Chem Eng Sci 101:266–270

    Article  CAS  Google Scholar 

  15. Gardas RL, Coutinho JAP (2008) Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilib 265:57–65

    Article  CAS  Google Scholar 

  16. Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH (2012) Group contribution model for estimation of surface tension of ionic liquids. Chem Eng Sci 78:204–208

    Article  CAS  Google Scholar 

  17. Pan Y, Zheng L, Xing NN, Ji HG, Guan W (2017) The molar surface Gibbs free energy and estimate of polarity for a new ether-functionalized ionic liquid [C22O1IM][DCA]. J Chem Thermodyn 112:213–219

    Article  CAS  Google Scholar 

  18. Wu KJ, Zhao CX, He CH (2012) A simple corresponding-states group-contribution method for estimating surface tension of ionic liquids. Fluid Phase Equilib 328:42–48

    Article  CAS  Google Scholar 

  19. Atashrouz S, Amini E, Pazuki G (2015) Modeling of surface tension for ionic liquids using group method of data handling. Ionics 21:1595–1603

    Article  CAS  Google Scholar 

  20. Olea AF, Worrall DR, Wilkinson F, Williamsa SL, Abdel-Shafia AA (2002) Solvent effects on the photophysical properties of 9,10-dicyanoanthracene. Phys Chem Chem Phys 4:161–166

    Article  CAS  Google Scholar 

  21. Fang DW, Guan W, Tong J, Wang ZW, Yang JZ (2008) Study on physicochemical properties of ionic liquids based on alanine [Cnmim][ala] (n = 2,3,4,5,6). J Phys Chem B 112:7499–7505

    Article  CAS  PubMed  Google Scholar 

  22. Santos CS, Baldelli S (2009) Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C1−C4, C8) in both cation and anion of [RMIM][R−OSO3] by sum frequency generation and surface tension. J Phys Chem B 113:923–933

    Article  CAS  PubMed  Google Scholar 

  23. Kolbeck C, Lehmann J, Lovelock KRJ, Cremer T, Paape N, Wasserscheid P, Fröba AP, Maier F, Steinrück HP (2010) Density and surface tension of ionic liquids. J Phys Chem B 114:17025–17036

    Article  CAS  PubMed  Google Scholar 

  24. Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. Chem Phys Chem 3:161–166

    Article  CAS  PubMed  Google Scholar 

  25. Bhargava BL, Balasubramanian S, Klein ML (2008) Modelling room temperature ionic liquids. Chem Commun 29:3339–3351

    Article  Google Scholar 

  26. Sánchez LG, Espel JR, Onink F, Meindersma GW, de Haan AB (2009) Density, viscosity, and surface tension of synthesis grade imidazolium, Pyridinium, and Pyrrolidinium based room temperature ionic liquids. J Chem Eng Data 54:2803–2812

    Article  Google Scholar 

  27. Martino W, de la Mora JF, Yoshida Y, Saito G, Wilkes J (2006) Surface tension measurements of highly conducting ionic liquids. Green Chem 8:390–397

    Article  CAS  Google Scholar 

  28. Tariq M, Serro AP, Mata JL, Saramago B, Esperanc JMSS, Lopes JNC, Rebelo LPN (2010) High-temperature surface tension and density measurements of 1-alkyl-3-methylimidazolium bistriflamide ionic liquids. Fluid Phase Equilib 294:131–138

    Article  CAS  Google Scholar 

  29. Restolho J, Serro AP, Mata JL, Saramago B (2009) Viscosity and surface tension of 1-Ethanol-3-methylimidazolium Tetrafluoroborate and 1-Methyl-3-octylimidazolium Tetrafluoroborate over a wide temperature rang. J Chem Eng Data 54:950–955

    Article  CAS  Google Scholar 

  30. Liu QS, Yang M, Yan PF, Liu XM, Tan ZC, Welz-Biermann U (2010) Density and surface tension of ionic liquids [Cnpy][NTf2] (n = 2, 4, 5) J. Chem Eng Data 55:4928–4930

    Article  CAS  Google Scholar 

  31. Carvalho PJ, Freire MG, Marrucho IM, Queimada AJ, Coutinho JAP (2008) Surface tensions for the 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. J Chem Eng Data 53:1346–1350

    Article  CAS  Google Scholar 

  32. Kurnia KA, Abdul Mutalib MIA, Man Z, Bustam MA (2012) Density and surface tension of ionic liquids [H2N–C2mim][PF6] and [H2N–C3mim][PF6]. J Chem Eng Data 57:2923–2927

    Article  CAS  Google Scholar 

  33. Fang DW, Wang H, Yue S, Xiong Y, Yang JZ, Zang SL (2012) Physicochemical properties of air and water stable rhenium ionic liquids. J Phys Chem B 116:2513–2519

    Article  CAS  PubMed  Google Scholar 

  34. Guan W, Ma XX, Li L, Tong J, Fang DW, Yang JZ (2011) Ionic Parachor and its application in acetic acid ionic liquid homologue 1-Alkyl-3-methylimidazolium acetate {[Cnmim][OAc](n = 2,3,4,5,6)}. J Phys Chem B 115:12915–12920

    Article  CAS  PubMed  Google Scholar 

  35. Malham IB, Letellier P, Turmine M (2006) Evidence of a phase transition in Water-Butyl-3-methylimidazolium Tetrafluoroborate and Water-1-Butyl-2,3-dimethylimidazolium Tetrafluoroborate mixtures at 298 K: determination of the surface thermal coefficient, bT,P. J Phys Chem B 110:14212–14214

    Article  CAS  Google Scholar 

  36. Li N, Zhang SH, Zheng LQ, Dong B, Li XW, Yu L (2008) Aggregation behavior of long-chain ionic liquids in an ionic liquid. Phys Chem Chem Phys 10:4375–4377

    Article  PubMed  Google Scholar 

  37. Tong J, Ma X, Kong YX, Chen Y, Guan W, Yang JZ (2012) Ionic Parachor and its application II. Ionic liquid homologues of 1-Alkyl-3-methylimidazolium Propionate {[Cnmim][Pro] (n =2 −6)}. J Phys Chem B 116:5971–5976

    Article  CAS  PubMed  Google Scholar 

  38. Velasco SB, Turmine M, Caprio DD, Letellier P (2006) Micelle formation in ethyl-ammonium nitrate (an ionic liquid). Colloids Surf A Physicochem Eng Asp 275:50–54

    Article  Google Scholar 

  39. Guggenheim EA (1966) Equilibria of chemical reactions. Oxford University Press

    Google Scholar 

  40. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  CAS  Google Scholar 

  41. Fröba AP, Wasserscheid P, Gerhard D, Kremer H, Leipertz A (2007) Revealing the influence of the strength of coulomb interactions on the viscosity and interfacial tension of ionic liquid Cosolvent mixtures. J Phys Chem B 111:12817–12822

    Article  PubMed  Google Scholar 

  42. Liu WW, Cheng LY, Zhang YM, Wang HP, Yu MF (2008) The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation. J Mol Liq 140:68–72

    Article  CAS  Google Scholar 

  43. Fang DW, Hu XH, Liang KH, Yan Q, Wei J (2019) The excess molar volume and the molar surface Gibbs energy of the binary of the ether-functionalized ionic liquids [C22O1IM][TfO] with ethanol and isomeric propanols at T = (288.15–318.15) K. Thermochim Acta 682:178383

    Article  CAS  Google Scholar 

  44. Gao YA, Zhao XY, Dong B, Zheng L, Li N, Zhang SH (2006) Inclusion complexes of β-Cyclodextrin with ionic liquid surfactants. J Phys Chem B 110:8576–8581

    Article  CAS  PubMed  Google Scholar 

  45. Adamson AW (1986) Physical chemistry of surfaces, 3rd edn. Wiley, New York

    Google Scholar 

  46. Wang Q, Wang H, Guo FS, Liu Y, Fang DW, Zang SL (2010) Estimation of physico-chemical properties of ionic liquid [C7mim][BF4]. Fluid Phase Equilib 299:300–303

    Article  CAS  Google Scholar 

  47. Tong J, Liu QS, Xu WG, Fang DW, Yang JZ (2008) Estimation of physicochemical properties of ionic liquids 1-Alkyl-3-methylimidazolium chloroaluminate. J Phys Chem B 112:4381–4386

    Article  CAS  PubMed  Google Scholar 

  48. Sun SG, Wei Y, Fang DW, Zhang QG (2008) Estimation of properties of the ionic liquid BMIZn3Cl7. Fluid Phase Equilib 273:27–30

    Article  CAS  Google Scholar 

  49. Wang JY, Zhao FY, Liu RJ, Hu YQ (2011) Thermophysical properties of 1-methyl-3-methylimidazolium dimethylphosphate and 1-ethyl-3-methylimidazolium diethylphosphate. J Chem Thermodyn 43:47–50

    Article  CAS  Google Scholar 

  50. Deetlefs M, Seddon KR, Shara M (2006) Predicting physical properties of ionic liquids. Phys Chem Chem Phys 8:642–649

    Article  CAS  PubMed  Google Scholar 

  51. Adamson AW (1986) Physical chemistry of surfaces, 3rd edn. Wiley, New York, 1976. Translated by TR Gu, Science Press, Beijing

    Google Scholar 

  52. Yang JZ, Lu XM, Gui JS, Xu WG (2004) A new theory for ionic liquids – the interstice model. Green Chem 6:541–543

    Article  CAS  Google Scholar 

  53. Guggenheim EA (1945) The principle of corresponding states. J Chem Phys 13(7):253–261

    Article  CAS  Google Scholar 

  54. Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tschersich A, Verevkin SP, Heintz A (2006) Experimental vapor pressures of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306

    Article  CAS  PubMed  Google Scholar 

  55. Tong J, Yang HX, Liu RJ, Chi L, Xia LX, Yang JZ (2014) Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-Alkyl-3-methylimidazolium propionate [Cnmim][Pro](n=4,5,6). J Phys Chem B 118:12972–12978

    Article  CAS  PubMed  Google Scholar 

  56. Mountain BW, Seward TM (2003) Hydrosulfide/sulfide complexes of copper(I): experimental confirmation of the stoichiometry and stability of Cu(HS)2− to elevated temperatures. Geochim Cosmochim Ac 67:3005–3014

    Article  CAS  Google Scholar 

  57. Bandrés I, Giner B, Artigas H, Royo FM, Lafuente C (2008) Thermophysic comparative study of two isomeric Pyridinium-based ionic liquids. J Phys Chem B 112:3077–3084

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fang, D., Wei, J. (2021). Surface Tension of Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_105-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_105-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics