Skip to main content

Viscosity of Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 89 Accesses

Introduction

Viscosity is a measure of a liquid’s resistance to flow. Transport properties including viscosity of ionic liquids (ILs) are important for the design of new electrolytic conductor, diffusion-limited chemical reactions, and phase equilibrium [1]. Transport properties of ILs are associated with the glass transition and fragility of ILs that is one of the most intriguing puzzles in the physics of condensed matter [2,3,4,5]. In this entry, we are concerned with the following issues: typical instruments and the corresponding uncertainties for the measurements of the viscosities of ILs, the factors influencing the reported values of the viscosities of ILs, quantitative corrections of the influences of contamination water and residual Cl−on the viscosity data of typical ILs, effects of ionic structures on viscosities of ILs, equations for fitting the viscosities of ILs as a function of temperature, theories for the correlation and prediction of the viscosities of ILs according...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mele A, Romancò G, Giannone M, Ragg E, Fronza G, Raos G, Marcon VA (2006) The local structure of ionic liquids: cation–cation noe interactions and internuclear distances in neat [BMIM][BF4] and [BDMIM][BF4]. Chem Int Ed 45(7):1123–1126

    Article  CAS  Google Scholar 

  2. Xu W, Angell CA (2003) Solvent-free electrolytes with aqueous solution-like conductivities. Science 302(5644):422–425

    Article  CAS  PubMed  Google Scholar 

  3. Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107(25):6170–6178

    Article  CAS  Google Scholar 

  4. Angell CA (2002) Liquid fragility and the glass transition in water and aqueous solutions. Chem Rev 102(8):2627–2650

    Article  CAS  PubMed  Google Scholar 

  5. Scopigno T, Ruocco G, Sette F, Monaco G (2003) Is the fragility of a liquid embedded in the properties of its glass? Science 302(5646):849–852

    Article  CAS  PubMed  Google Scholar 

  6. Li JG, Hu YF, Ling S, Zhang JZ (2011) Molecular distillation of petroleum residues and physical-chemical characterization of distillate cuts obtained in the process. J Chem Eng Data 55(9):3068–3076

    Article  Google Scholar 

  7. Seddon KR, Stark A, Torres MJ (2002) Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids. ACS Symp Ser 819:34–49

    Article  CAS  Google Scholar 

  8. Zhu JQ, Chen J, Li CY, Fei WY (2007) Viscosities and interfacial properties of 1-methyl-3-butylimidazolium hexafluorophosphate and 1-isobutenyl-3-methylimidazolium tetrafluoroborate ionic liquids. J Chem Eng Data 52(3):812–816

    Article  CAS  Google Scholar 

  9. Rodríguez H, Brennecke JF (2006) Temperature and composition dependence of the density and viscosity of binary mixtures of water + ionic liquid. J Chem Eng Data 51(6):2145–2155

    Article  Google Scholar 

  10. Crosthwaite JM, Muldoon MJ, Dixon JK, Anderson JL, Brennecke JF (2005) Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn 37(6):559–568

    Article  CAS  Google Scholar 

  11. Ahosseini A, Scurto AM (2008) Viscosity of imidazolium-based ionic liquids at elevated pressures: cation and anion effects. Int J Thermophys 29:1222–1243

    Article  CAS  Google Scholar 

  12. Sanmamed YA, González-Salgado D, Troncoso J, Cerdeiriña CA, Romaní L (2007) Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib 252(1–2):96–102

    Article  CAS  Google Scholar 

  13. Salgado J, Regueira T, Lugo L, Vijande J, Fernández J, García J (2014) Density and viscosity of three (2,2,2-trifluoroethanol + 1-butyl-3-methylimidazolium) ionic liquid binary systems. J Chem Thermodyn 70:101–110

    Article  CAS  Google Scholar 

  14. Song D, Chen J (2014) Density and viscosity data for mixtures of ionic liquids with a common anion. J ChemEng Data 59(2):257–262

    Article  CAS  Google Scholar 

  15. Neves CMSS, Kurnia KA, Coutinho JAP, Marrucho IM, Canongia Lopes JN, Freire MG, Rebelo LPN (2013) Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions. J Phys Chem B 117(35):10271–10283

    Article  CAS  PubMed  Google Scholar 

  16. Rilo E, Vila J, Pico J, García-Garabal S, Segade L, Varela LM, Cabeza O (2010) Electrical conductivity and viscosity of aqueous binary mixtures of 1-alkyl-3-methyl imidazolium tetrafluoroborate at four temperatures. J Chem Eng Data 55(2):639–644

    Article  CAS  Google Scholar 

  17. Oliveira FS, Freire MG, Carvalho PJ, Coutinho JAP, Canongia Lopes JN, Rebelo LPN, Marrucho IM (2010) Structural and positional isomerism influence in the physical properties of pyridinium NTf2− based ionic liquids: pure and water-saturated mixtures. J Chem Eng Data 55(10):4514–4520

    Article  CAS  Google Scholar 

  18. Sánchez LG, Espel JR, Onink F, Meindersma GW, Haan ABD (2009) Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J Chem Eng Data 54(10):2803–2812

    Article  Google Scholar 

  19. Li WJ, Zhang ZF, Han BX, Hu SQ, Xie Y, Yang GY (2007) Effect of water and organic solvents on the ionic dissociation of ionic liquids. J Phys Chem B 111(23):6452–6456

    Article  CAS  PubMed  Google Scholar 

  20. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  PubMed  Google Scholar 

  21. Arce A, Rodil E, Soto A (2006) Volumetric and viscosity study for the mixtures of 2-ethoxy-2-methylpropane, ethanol, and 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid. J Chem Eng Data 51(4):1453–1457

    Article  CAS  Google Scholar 

  22. Jiang SQ, Hu YF, Wang YC, Wang XF (2019) Viscosity of typical room-temperature ionic liquids: a critical review. J Phys Chem Ref Data 48:033101-1–033101-41

    Article  Google Scholar 

  23. Yu GR, Zhao DC, Wen L, Yang SD, Chen XC (2012) Viscosity of ionic liquids: database, observation, and quantitative structure-property relationship analysis. AICHE J 58(9):2885–2899

    Article  CAS  Google Scholar 

  24. Zhang SJ, Sun N, He XZ, Lu XM, Zhang XP (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data 35(4):1475–1517

    Article  CAS  Google Scholar 

  25. Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T (2012) Mixtures of ionic liquids. Chem Soc Rev 41:7780–7802

    Article  CAS  PubMed  Google Scholar 

  26. Widegren JA, Laesecke A, Magee JW (2005) The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem Commun 12:1610–1612

    Article  Google Scholar 

  27. Vogel H (1921) Das temperaturabhängigkeitsgesetz der viskosität von flüssigkeiten. Phys Z 22:645–646

    CAS  Google Scholar 

  28. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    Article  CAS  Google Scholar 

  29. Tammann G (1925) Glasses as supercooled liquids. J Soc Glas Technol 9:166–185

    CAS  Google Scholar 

  30. Scherer GW (1992) Editorial comments on a paper by Gordon S. Fulcher. J Am Ceram Soc 75:1060–1062

    Article  Google Scholar 

  31. Kitaoka S, Nobuoka K, Ishikawa Y (2005) Ionic liquids for tetraarylporphyrin preparation. Tetrahedron 61(32):7678–7685

    Article  CAS  Google Scholar 

  32. Hu YF, Zhang XM, Qi JG et al (2015) The configuration exchanging theory for transport properties and glass formation temperature of ionic liquids. J Chem Phys 143:204501

    Article  PubMed  Google Scholar 

  33. Qi JG, Hu YF, Zhao YM, Li JG (2015) The role of the symmetry and the flexibility of the anion on the characteristics of the nanostructures and the viscosities of ionic liquids. Chin Chem Eng 23:1565–1571

    Article  CAS  Google Scholar 

  34. Zhou Z, Matsumoto H, Tatsumi K (2005) Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates. ChemPhysChem 6(7):1324–1332

    Article  CAS  PubMed  Google Scholar 

  35. Brush SG (1961) Theories of liquid viscosity. Chem Rev 62(6):513–548

    Article  Google Scholar 

  36. Kincaid JF, Eyring H, Stearn AE (1941) The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid state. Chem Rev 28(2):301–365

    Article  CAS  Google Scholar 

  37. Harrap BS, Heymann E (1951) Theories of viscosity applied to ionic liquids. Chem Rev 48(1):45–67

    Article  CAS  PubMed  Google Scholar 

  38. Lauffer MA (1942) Experimental facts pertaining to the relationship between viscosity, molecular size, and molecular shape. Chem Rev 31(3):561–586

    Article  CAS  Google Scholar 

  39. Gardas RL, Coutinho JAP (2008) A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilib 266(1–2):195–201

    Article  CAS  Google Scholar 

  40. Gardas RL, Coutinho JAP (2009) Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AICHE J 55(5):1274–1290

    Article  CAS  Google Scholar 

  41. Bini R, Malvaldi M, Pitner WR, Chiappe C (2008) QSPR correlation for conductivities and viscosities of low-temperature melting ionic liquids. J Phys Org Chem 21(7–8):622–629

    Article  CAS  Google Scholar 

  42. Mirkhani SA, Gharagheizi F (2012) Predictive quantitative structure–property relationship model for the estimation of ionic liquid viscosity. Ind Eng Chem Res 51(5):2470–2477

    Article  CAS  Google Scholar 

  43. Han C, Yu G, Wen L, Zhao D, Asumana C, Chen XC (2011) Data and QSPR study for viscosity of imidazolium-based ionic liquids. Fluid Phase Equilib 300(1–2):95–104

    Article  CAS  Google Scholar 

  44. Matsuda H, Yamamoto H, Kurihara K, Tochigi K (2007) Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities. Fluid Phase Equilib 261(1–2):434–443

    Article  CAS  Google Scholar 

  45. Tochigi K, Yamamoto H (2007) Estimation of ionic conductivity and viscosity of ionic liquids using a QSPR model. J Phys Chem C 111(43):15989–15994

    Article  CAS  Google Scholar 

  46. Siqueira LJA, Ribeiro MCC (2009) Alkoxy chain effect on the viscosity of a quaternary ammonium ionic liquid: molecular dynamics simulations. J Phys Chem B 113(4):1074–1079

    Article  CAS  PubMed  Google Scholar 

  47. Rey-Castro C, Vega LF (2006) Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature. J Phys Chem B 110(29):14426–14435

    Article  CAS  PubMed  Google Scholar 

  48. Micaelo NM, Baptista AM, Soares CM (2006) Parametrization of 1-butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field. J Phys Chem B 110(29):14444–14451

    Article  CAS  PubMed  Google Scholar 

  49. Hunt PA (2007) Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? J Phys Chem B 111(18):4844–4853

    Article  CAS  PubMed  Google Scholar 

  50. Ma XN, Yan LY, Wang XF, Guo QJ, Xia AD (2011) Determination of the hydrogen-bonding induced local viscosity enhancement in room temperature ionic liquids via femtosecond time-resolved depleted spontaneous emission. J Phys Chem A 115(27):7937–7947

    Article  CAS  PubMed  Google Scholar 

  51. Yu GR, Zhang SJ, Zhou GH, Liu XM, Chen XC (2007) Structure, interaction and property of amino-functionalized imidazolium ILs by molecular dynamics simulation and Ab initio calculation. AICHE J 53(12):3210–3221

    Article  CAS  Google Scholar 

  52. Ghatee MH, Zare M (2011) Power-law behavior in the viscosity of ionic liquids: existing a similarity in the power law and a new proposed viscosity equation. Fluid Phase Equilib 311:76–82

    Article  CAS  Google Scholar 

  53. Jacquemin J, Husson P, Padua AAH, Majer V (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180

    Article  CAS  Google Scholar 

  54. Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. Electroanal Chem 568:167–181

    Article  CAS  Google Scholar 

  55. Harris KR, Woolf LA, Kanakubo M (2005) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Chem Eng Data 50(5):1777–1782

    Article  CAS  Google Scholar 

  56. Shirota H, Castner EW (2005) Why are viscosities lower for ionic liquids with -CH2Si(CH3)3 vs -CH2C(CH3)3 substitutions on the imidazolium cations? J Phys Chem B 109(46):21576–21585

    Article  CAS  PubMed  Google Scholar 

  57. Harris KR, Kanakubo M, Woolf LA (2006) Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J Chem Eng Data 51(3):1161–1167

    Article  CAS  Google Scholar 

  58. Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 52(3):1080–1085

    Article  CAS  Google Scholar 

  59. Comminges C, Barhdadi R, Laurent M, Troupel M (2006) Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: ionic liquids + molecular solvents. J Chem Eng Data 51(2):680–685

    Article  CAS  Google Scholar 

  60. Ghatee MH, Zare M, Zolghadr AR, Moosav F (2010) Temperature dependence of viscosity and relation with the surface tension of ionic liquids. Fluid Phase Equilib 291(2):188–194

    Article  CAS  Google Scholar 

  61. Martinez-Garcia JC, Rzoska SJ, Drozd-Rzoska A, Martinez-Garcia J (2013) A universal description of ultraslow glass dynamics. Nat Commun 4:1823

    Article  PubMed  Google Scholar 

  62. Hecksher T, Nielsen AI, Olsen NB, Dyre JC (2008) Little evidence for dynamic divergences in ultraviscous molecular liquids. Nat Phys 4:737–741

    Article  CAS  Google Scholar 

  63. McKenna GB (2008) Diverging views on glass transition. Nat Phys 4:673–674

    Article  CAS  Google Scholar 

  64. Zhao J, Simon SL, Mckenna GB (2013) Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems. Nat Commun 4:1783

    Article  PubMed  Google Scholar 

  65. Mauro JC, Yue Y, Ellison AJ, Gupta PK, Allan DC (2009) Viscosity of glass-forming liquids. Proc Natl Acad Sci 106(47):19780–19784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ikeda A, Miyazaki K (2010) Mode-coupling theory as a mean-field description of the glass transition. Phys Rev Lett 104:255704

    Article  PubMed  Google Scholar 

  67. Parisi G, Zamponi F (2010) Mean-field theory of hard sphere glasses and jamming. Rev Mod Phys 82(1):789–845

    Article  Google Scholar 

  68. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    Article  CAS  Google Scholar 

  69. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267

    Article  CAS  PubMed  Google Scholar 

  70. Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267(5206):1924–1935

    Article  CAS  PubMed  Google Scholar 

  71. Litovitz TA (1952) Temperature dependence of the viscosity of associated liquids. J Chem Phys 20(7):1088–1089

    Article  CAS  Google Scholar 

  72. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147

    Article  CAS  PubMed  Google Scholar 

  73. Fei ZF, Zhao DB, Geldbach TJ, Scopelliti R, Dyson P (2004) Brønsted acidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination. Chem Eur J 10(19):4886–4893

    Article  CAS  PubMed  Google Scholar 

  74. Mele A, Tran CD, Lacerda SHDP (2003) The structure of a room-temperature ionic liquid with and without trace amounts of water: the role of C-H. O and C-H. F interactions in 1-n-butyl-3-methylimidazolium tetrafluoroborate. Angew Chem Int Ed 42(36):4364–4366

    Article  CAS  Google Scholar 

  75. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110

    Article  CAS  PubMed  Google Scholar 

  76. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108(42):16593–16600

    Article  CAS  Google Scholar 

  77. Morrow TI, Maginn EJ (2002) Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106(49):12807–12813

    Article  CAS  Google Scholar 

  78. Hu YF, Liu ZC, Xu CM, Zhang XM (2011) The molecular characteristics dominating the solubility of gases in ionic liquids. Chem Soc Rev 40(7):3802–3823

    Article  CAS  PubMed  Google Scholar 

  79. Zhang SJ, Li X, Chen HP, Wang JP, Zhang JM, Zhang ML (2004) Determination of physical properties for the binary system of 1-ethyl-3-methylimidazolium tetrafluoroborate + H2O. J Chem Eng Data 49(4):760–764

    Article  CAS  Google Scholar 

  80. Nosengo N (2016) The material code. Nature 533(7601):22–25

    Article  CAS  PubMed  Google Scholar 

  81. Mauro JC (2018) Decoding the glass genome. Curr Opin Solid State Mater Sci 22(2):58–64

    Article  CAS  Google Scholar 

  82. Mauro JC, Tandia A, Vargheese KD et al (2016) Accelerating the design of functional glasses through modeling. Chem Mater 28(12):4267–4277

    Article  CAS  Google Scholar 

  83. Arnold-McKenna C, McKenna GB (1993) Workshop on aging, dimensional stability, and durability issues in high technology polymers. J Res NatI Inst Stand Technol 98(4):523–533

    Google Scholar 

  84. Kirkpatrick TR, Thirumalai D (2015) Random first order transition theory concepts in biology and physics. Rev Mod Phys 87(1):183–209

    Article  CAS  Google Scholar 

  85. Dyre JC (2006) The glass transition and elastic models of glass-forming liquids. Rev Mod Phys 78(3):953–972

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichang Liu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jiang, S., Hu, Y., Liu, Z., Ren, C. (2021). Viscosity of Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_102-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_102-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics