Skip to main content

Structure Design of Precision Machines

  • Living reference work entry
  • First Online:

Part of the book series: Precision Manufacturing ((PRECISION))

Abstract

This chapter starts with the ultraprecision processing technology and then analyzes the route of ultraprecision machine tools’ forward design and the relevant factors based on cutting mechanism, principal components, and processing technology. According to the ultraprecision machine tools in the market, several kinds of conventional ultraprecision machines’ design configurations are introduced, and the design of the ultraprecision aspheric grinding machine is discussed in detail.

This is a preview of subscription content, log in via an institution.

References

  • Bin L (2015) Large-diameter aspheric mirror precision CNC grinding technology. Xi’an Jiaotong University, Xi’an, China

    Google Scholar 

  • Brinksmeier E, Mutlugünes Y, Klocke F et al (2010) Ultra-precision grinding. CIRP Ann Manuf Technol 59(2):652–671

    Article  Google Scholar 

  • Chang HC, Wang JJ (2008) A stochastic grinding force model considering random grit distribution. Int J Mach Tools Manuf 48(12–13):1335–1344

    Article  Google Scholar 

  • Chen X, Rowe WB (1996) Analysis and simulation of the grinding process. Part I: generation of the grinding wheel surface. Int J Mach Tools Manuf 36(8):871–882

    Article  Google Scholar 

  • Cheng X, Nakamoto K, Sugai M et al (2008) Development of ultra-precision machining system with unique wire EDM tool fabrication system for micro/nano-machining. CIRP Ann Manuf Technol 57(1):415–420

    Article  Google Scholar 

  • Cheung CF, Lee WB (2000) A multi-spectrum analysis of surface roughness formation in ultra-precision machining. Precis Eng 24(1):77–87

    Article  Google Scholar 

  • DeBra DB, Hesselink L, Binford T (1990) Ultra precision machining. Stanford University CA Department of Aeronautics and Astronautics, Stanford

    Google Scholar 

  • Dornfeld D, Lee DE (2008) Machine design for precision manufacturing. Springer US, New York

    Book  Google Scholar 

  • Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768

    Article  Google Scholar 

  • Ferreira PM, Liu CR (1993) A method for estimating and compensating quasistatic errors of machine tools. J Eng Ind 115(1):149–159

    Article  Google Scholar 

  • Furukawa Y, Moronuki N (1988) Effect of material properties on ultra precise cutting processes. CIRP Ann Manuf Technol 37(1):113–116

    Article  Google Scholar 

  • Furukawa Y, Miyashita M, Shiozaki S (1971) Vibration analysis and work-rounding mechanism in centerless grinding. Int J Mach Tool Des Res 11(2):145–175

    Article  Google Scholar 

  • Gao W, Tano M, Araki T, Kiyono S, Park CH (2007) Measurement and compensation of error motions of a diamond turning machine. Precis Eng 31(3):310–316

    Article  Google Scholar 

  • Gong H, Fang FZ, Hu XT (2010) Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials. Int J Mach Tools Manuf 50(3):303–307

    Article  Google Scholar 

  • Guangxian X, Xiangyun W (2010) Material structure, 2nd edn. Science Press, Beijing

    Google Scholar 

  • Hitchiner MP, Marinescu ID, Uhlmann E et al (2016) Handbook of machining with grinding wheels. CRC Press, Boca Raton

    Google Scholar 

  • Huang H, Yin L, Zhou L (2003) High speed grinding of silicon nitride with resin bond diamond wheels. J Mater Process Technol 141(3):329–336

    Article  Google Scholar 

  • Inasaki I (1987) Grinding of hard and brittle materials. CIRP Ann Manuf Technol 36(2):463–471

    Article  Google Scholar 

  • Jiang XJ, Whitehouse DJ (2012) Technological shifts in surface metrology. CIRP Ann Manuf Technol 61(2):815–836

    Article  Google Scholar 

  • Jianpu X (2015) Precision grinding and error compensation technology of aspheric optical components. Xi’an Jiaotong University, Xi’an, China

    Google Scholar 

  • Khan AW, Wuyi C (2010) Systematic geometric error modeling for workspace volumetric calibration of a 5-axis turbine blade grinding machine. Chin J Aeronaut 23(5):604–615

    Article  Google Scholar 

  • Kim JD, Kim DS (1995) Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J Mater Process Technol 49(3–4):387–398

    Article  Google Scholar 

  • Koenigsberger F, Tlusty J (2016) Machine tool structure. Elsevier, Oxford, UK

    Google Scholar 

  • Komanduri R, Lucca DA, Tani Y (1997) Technological advances in fine abrasive processes. CIRP Ann Manuf Technol 46(2):545–596

    Article  Google Scholar 

  • Kong L (2010) Modeling of ultra-precision raster milling and characterization of optical freeform surfaces. Hong Kong Polytechnic University, Hong Kong, China

    Google Scholar 

  • Kuriyagawa T, Saeki M, Syoji K (2002) Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts. Precis Eng 26(4):370–380

    Article  Google Scholar 

  • Leadbeater PB, Clarke M, Wills-Moren WJ, Wilson TJ (1989) A unique machine for grinding large, off-axis optical components: the OAGM 2500. Precis Eng 11(4):191–196

    Article  Google Scholar 

  • Lee WB, Cheung CF, To S (1999) Materials induced vibration in ultra-precision machining. J Mater Process Technol 89:318–325

    Article  Google Scholar 

  • Lee WB, Cheung CF, Chiu WM et al (2000) An investigation of residual form error compensation in the ultra-precision machining of aspheric surfaces. J Mater Process Technol 99(1–3):129–134

    Article  Google Scholar 

  • Mamalis AG, Grabchenko AI, Horváth M, Mészáros I, Paulmier D (2001) Ultraprecision metal removal processing of mirror-surfaces. J Mater Process Technol 108(3):269–277

    Article  Google Scholar 

  • McKeown P, Corbett J (2004) Ultra precision machine tools//Autonome produktion. Springer, Berlin, pp 313–327

    Google Scholar 

  • Okafor AC, Ertekin YM (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Int J Mach Tools Manuf 40(8):1199–1213

    Article  Google Scholar 

  • Oryński F, Pawłowski W (1999) The influence of grinding process on forced vibration damping in headstock of grinding wheel of cylindrical grinder. Int J Mach Tools Manuf 39(2):229–235

    Article  Google Scholar 

  • Park CH, Song CK, Hwang J et al (2009) Development of an ultra precision machine tool for micromachining on large surfaces. Int J Precis Eng Manuf 10(4):85

    Article  Google Scholar 

  • Pei ZJ, Billingsley SR, Miura S (1999) Grinding induced subsurface cracks in silicon wafers. Int J Mach Tools Manuf 39(7):1103–1116

    Article  Google Scholar 

  • Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools – a review: part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  • Rowe WB, Morgan MN, Qi HS et al (1993) The effect of deformation on the contact area in grinding. CIRP Ann Manuf Technol 42(1):409–412

    Article  Google Scholar 

  • Scheiding S, Damm C, Holota W et al (2010) Ultra-precisely manufactured mirror assemblies with well-defined reference structures//Modern Technologies in Space-and Ground-based Telescopes and Instrumentation. Int Soc Opt Photon 7739:773908

    Google Scholar 

  • Shore P, Luo X, Jin T et al (2005) Grinding mode of the BOX ultra precision free-form grinder. Proc ASPE pp. 1–4

    Google Scholar 

  • Shore P, Morantz P, Luo X, Tonnellier X, Collins R, Roberts A, MayMiller R, Read R (2005b) Big OptiX ultra precision grinding/measuring system. Proc SPIE 5965:241–248

    Google Scholar 

  • Somiya (1984) Advanced technical ceramics. Academic, Tokyo

    Google Scholar 

  • Taniguchi N (1983) Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann 32(2):573–582

    Article  Google Scholar 

  • Thompson R (2007) Manufacturing processes for design professionals. Thames & Hudson, New York

    Google Scholar 

  • Wattanasakulpong N, Prusty BG, Kelly DW et al (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Des (1980–2015) 36:182–190

    Article  Google Scholar 

  • Xu HK, Jahanmir S, Ives LK (1996) Material removal and damage formation mechanisms in grinding silicon nitride. J Mater Res 11(7):1717–1724

    Article  Google Scholar 

  • Yang Y, Lin J, Xu S (2012) Surface grinding machine stability characteristics limited prediction. Mech Eng Res 2(2):114

    Google Scholar 

  • Yuan J, Zhang F, Dai Y et al (2010) Development research of science and technologies in ultra-precision machining field. Jixie Gongcheng Xuebao (Chin J Mech Eng) 46(15):161–177

    Article  Google Scholar 

  • Zaghbani I, Songmene V (2009) Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis. Int J Mach Tools Manuf 49(12–13):947–957

    Article  Google Scholar 

  • Zhang GP, Huang YM, Shi WH et al (2003) Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering. Int J Mach Tools Manuf 43(7):699–706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiying Zhao or Shuming Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhao, H., Yang, S. (2019). Structure Design of Precision Machines. In: Yang, S., Jiang, Z. (eds) Precision Machines. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-5192-0_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5192-0_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5192-0

  • Online ISBN: 978-981-10-5192-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics